3,552 research outputs found

    Electroweak Contributions to Squark Pair Production at the LHC

    Full text link
    In this paper we compute electroweak contributions to the production of squark pairs at hadron colliders. These include the exchange of electroweak gauge bosons in the s-channel as well as electroweak gaugino exchange in the t- and/or u-channel. In many cases these can interfere with the dominant QCD contributions. As a result, we find sizable contributions to the production of two SU(2) doublet squarks. At the LHC, they amount to 10 to 20% for typical mSUGRA (or CMSSM) scenarios, but in more general scenarios they can vary between -40 and +55%, depending on size and sign of the SU(2) gaugino mass. The electroweak contribution to the total squark pair production rate at the LHC is about 3.5 times smaller.Comment: 28 pages, 9 figure

    A Simple Way of Calculating Cosmological Relic Density

    Full text link
    A simple procedure is presented which leads to a dramatic simplification in the calculation of the relic density of stable particles in the Universe.Comment: 7 pages in LaTex, no figures; University of Michigan preprint UM-TH-94-02 (February 1994). Changes: a coefficient in b0b^0 (Eq. 16) corrected; added Acknowledgements and revised Note Added; plain LaTex only (no need to use RevTex

    Supersymmetric Higgs pair discovery prospects at hadron colliders

    Get PDF
    We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the Minimal Supersymmetric Standard Model. Using analytical expressions for the relevant amplitudes, we perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is emphasised. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.Comment: 5 pages, hep99, 6 figures; Presented at the International Europhysics Conference on High Energy Physics, Tampere, Finland, 15-21 July 199

    Zeroing in on Supersymmetric Radiation Amplitude Zeros

    Full text link
    Radiation amplitude zeros have long been used to test the Standard Model. Here, we consider the supersymmetric radiation amplitude zero in chargino-neutralino associated production, which can be observed at the luminosity upgraded LHC. Such an amplitude zero only occurs if the neutralino has a large wino fraction and hence this observable can be used to determine the neutralino eigenstate content. We find that this observable can be measured by comparing the p_T spectrum of the softest lepton in the trilepton χ1±χ20\chi_1^\pm \chi_2^0 decay channel to that of a control process such as χ1+χ1\chi_1^+ \chi_1^- or χ20χ20\chi_2^0 \chi_2^0. We test this technique on a previously generated model sample of the 19 dimensional parameter space of the phenomenological MSSM, and find that it is effective in determining the wino content of the neutralino.Comment: 19 pages, 7 figure

    Addressing \mu-b_\mu and proton lifetime problems and active neutrino masses in a U(1)^\prime-extended supergravity model

    Full text link
    We present a locally supersymmetric extension of the minimal supersymmetric Standard Model (MSSM) based on the gauge group SU(3)C×SU(2)L×U(1)Y×U(1)SU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)^\prime where, except for the supersymmetry breaking scale which is fixed to be 1011\sim 10^{11} GeV, we require that all non-Standard-Model parameters allowed by the {\it local} spacetime and gauge symmetries assume their natural values. The U(1)U(1)^\prime symmetry, which is spontaneously broken at the intermediate scale, serves to ({\it i}) explain the weak scale magnitudes of μ\mu and bμb_\mu terms, ({\it ii}) ensure that dimension-3 and dimension-4 baryon-number-violating superpotential operators are forbidden, solving the proton-lifetime problem, ({\it iii}) predict {\it bilinear lepton number violation} in the superpotential at just the right level to accommodate the observed mass and mixing pattern of active neutrinos (leading to a novel connection between the SUSY breaking scale and neutrino masses), while corresponding trilinear operators are strongly supppressed. The phenomenology is like that of the MSSM with bilinear R-parity violation, were the would-be lightest supersymmetric particle decays leptonically with a lifetime of 1012108\sim 10^{-12}-10^{-8} s. Theoretical consistency of our model requires the existence of multi-TeV, stable, colour-triplet, weak-isosinglet scalars or fermions, with either conventional or exotic electric charge which should be readily detectable if they are within the kinematic reach of a hadron collider. Null results of searches for heavy exotic isotopes implies that the re-heating temperature of our Universe must have been below their mass scale which, in turn, suggests that sphalerons play a key role for baryogensis. Finally, the dark matter cannot be the weakly interacting neutralino.Comment: 33 pages, 2 figures, Discussion on proton decay and radiative neutrino masses augmented, and references adde

    Supercollider Signatures of Supergravity Models with Yukawa Unification

    Full text link
    We study the predictions of the simplest SU(5) grand unified model within the framework of minimal supergravity, including constraints from the radiative breaking of electroweak symmetry. As a consequence of the unification of the bb-quark and τ\tau-lepton Yukawa couplings, the top quark mass is predicted to be close to its fixed point value. We delineate the regions of the supergravity parameter space allowed by constraints from the non-observation of proton decay and from the requirement that the LSP does not overclose the universe. These constraints lead to a definite pattern of sparticle masses: the feature unique to Yukawa unified models is that some of the third generation squarks are much lighter than those of the first two generations. Despite the fact that all sparticle masses and mixings are determined by just four SUSY parameters at the GUT scale (in addition to mtm_t), we find that the signals for sparticle production can vary substantially over the allowed parameter space. We identify six representative scenarios and study the signals from sparticle production at the LHC. We find that by studying the signal in various channels, these scenarios may be distinguished from one another, and also from usually studied ``minimal models'' where squarks and sleptons are taken to be degenerate. In particular, our studies allow us to infer that some third generation squarks are lighter than other squarks---a feature that could provide the first direct evidence of supergravity grand unification.Comment: 28 pages Revtex files with 5 PS figures available from [email protected], Preprint nos. FSU-HEP-940311, KEK-TH-392, MAD/PH/825, UH-511-785-9

    Multiple Interactions in Two-Photon Collisions

    Get PDF
    We compute cross sections for events where two pairs of partons scatter off each other in the same γγ\gamma\gamma reaction, giving rise to at least 3 high--{\mbox{pTp_T^{}}} jets. Unlike in {\mbox{ppˉp \bar p}}\ collisions we find the signal to lie well above the background from higher order QCD processes. If the usual ``eikonaliztion" assumption is correct, the signal should be readily observable at LEP2, and might already be detectable in data taken at TRISTAN.Comment: 8 pages, plain LaTeX, 2 figures (not included). A compressed PS file of the entire paper, including figures, can be obtained via anonymous ftp from ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-921.ps.

    Photon-Photon and Photon-Hadron Physics at Relativistic Heavy Ion Colliders

    Get PDF
    Due to the coherence of all the protons in a nucleus, there are very strong electromagnetic fields of short duration in relativistic heavy ion collisions. They give rise to quasireal photon-photon and photon-nucleus collisions with a large flux. RHIC will begin its experimental program this year and such types of collisions will be studied experimentally at the STAR detector. RHIC will have the highest flux of (quasireal) photons up to now in the GeV region. At the LHC the invariant mass range available in gamma-gamma-interactions will be of the order of 100 GeV, i.e., in the range currently available at LEP2, but with a higher gamma-gamma-luminosity. Therefore one has there also the potential to study new physics. (Quasireal) photon-hadron (i.e., photon-nucleus) interactions can be studied as well, similar to HERA, at higher invariant masses. Vector mesons can be produced coherently through photon-Pomeron and photon-meson interactions in exclusive reactions such as A+A -> A+A+V, where A is the heavy ion and V=rho,omega,phi or J/Psi.Comment: 6 pages, to be published in the proceedings of the Photon'99 conferenc

    Predictions in SU(5) Supergravity Grand Unification with Proton Stability and Relic Density Constraints

    Get PDF
    It is shown that in the physically interesting domain of the parameter space of SU(5) supergravity GUT, the Higgs and the Z poles dominate the LSP annihilation. Here the naive analyses on thermal averaging breaks down and formulae are derived which give a rigorous treatment over the poles. These results are then used to show that there exist significant domains in the parameter space where the constraints of proton stability and cosmology are simultaneously satisfied. New upper limits on light particle masses are obtained.Comment: (An error in the reheating factor is corrected, strengthening the conclusions, i.e. the region in parameter space where the relic density constraints are satisfied is enlarged.
    corecore