3,119 research outputs found

    Improved ferrous shielding for flat cables

    Get PDF
    To improve shielding of flat multicore cables, a thin, seamless ferrous shield around all cores optimizes low frequency magnetic shielding. Such shielding is covered with an ultrathin seamless coat of highly conductive nonferrous material

    On quantum and parallel transport in a Hilbert bundle over spacetime

    Full text link
    We study the Hilbert bundle description of stochastic quantum mechanics in curved spacetime developed by Prugove\v{c}ki, which gives a powerful new framework for exploring the quantum mechanical propagation of states in curved spacetime. We concentrate on the quantum transport law in the bundle, specifically on the information which can be obtained from the flat space limit. We give a detailed proof that quantum transport coincides with parallel transport in the bundle in this limit, confirming statements of Prugove\v{c}ki. We furthermore show that the quantum-geometric propagator in curved spacetime proposed by Prugove\v{c}ki, yielding a Feynman path integral-like formula involving integrations over intermediate phase space variables, is Poincar\'e gauge covariant (i.e. ⁣\! is gauge invariant except for transformations at the endpoints of the path) provided the integration measure is interpreted as a ``contact point measure'' in the soldered stochastic phase space bundle raised over curved spacetime.Comment: 25 pages, Plain TeX, harvmac/lanlma

    Absence of fermionic quasi-particles in the superfluid state of the attractive Fermi gas

    Full text link
    We calculate the effect of order parameter fluctuations on the fermionic single-particle excitations in the superfluid state of neutral fermions interacting with short range attractive forces. We show that in dimensions D \leq 3 the singular effective interaction between the fermions mediated by the gapless Bogoliubov-Anderson mode prohibits the existence of well-defined quasi-particles. We explicitly calculate the single-particle spectral function in the BEC regime in D=3 and show that in this case the quasi-particle residue and the density of states are logarithmically suppressed.Comment: 4 RevTex pages, 3 figures; title changed, new Figure 1, added references. We argue that in the entire regime of the BCS-BEC crossover the quasi-particle picture breaks down in D <=3 for neutral fermions (but NOT for charged fermions

    Renormalization of the BCS-BEC crossover by order parameter fluctuations

    Full text link
    We use the functional renormalization group approach with partial bosonization in the particle-particle channel to study the effect of order parameter fluctuations on the BCS-BEC crossover of superfluid fermions in three dimensions. Our approach is based on a new truncation of the vertex expansion where the renormalization group flow of bosonic two-point functions is closed by means of Dyson-Schwinger equations and the superfluid order parameter is related to the single particle gap via a Ward identity. We explicitly calculate the chemical potential, the single-particle gap, and the superfluid order parameter at the unitary point and compare our results with experiments and previous calculations.Comment: 5 pages, 3 figure

    Field-induced gapless electron pocket in the superconducting vortex phase of YNi2B2C as probed by magnetoacoustic quantum oscillations

    Full text link
    By use of ultrasound studies we resolved magneto-acoustic quantum oscillation deep into the mixed state of the multiband nonmagnetic superconductor YNi2B2C. Below the upper critical field, only a very weak additional damping appears that can be well explained by the field inhomogeneity caused by the flux-line lattice in the mixed state. This is clear evidence for no or a vanishingly small gap for one of the bands, namely, the spheroidal alpha band. This contrasts de Haas--van Alphen data obtained by use of torque magnetometry for the same sample, with a rapidly vanishing oscillation signal in the mixed state. This points to a strongly distorted flux-line lattice in the latter case that, in general, can hamper a reliable extraction of gap parameters by use of such techniques.Comment: 6 pages, 6 figure

    Saturation field of frustrated chain cuprates: broad regions of predominant interchain coupling

    Full text link
    An efficient and precise thermodynamic method to extract the interchain coupling (IC) of spatially anisotropic 2D or 3D spin-1/2 systems from their empirical saturation field H_s (T=0) is proposed. Using density-matrix renormalization group, hard-core boson, and spin-wave theory we study how H_s is affected by an antiferromagnetic (AFM) IC between frustrated chains described in the J_1-J_2-spin model with ferromagnetic 1st and AFM 2nd neighbor in-chain exchange. A complex 3D-phase diagram has been found. For Li2CuO2 and Y2Ca2Cu5O10, we show that H_s is solely determined by the IC and predict H_s approx 61 T for the latter.Using H_s approx 55 T from our high-field pulsed measurements one reads out a weak IC for Li2CuO2 close to that from neutron scattering.Comment: 4 pages, 6 figures, slightly revised version including a slightly changed title and abstract, one new figure and an EPAPS-supplementatary part have been adde
    corecore