62 research outputs found

    Current levels of suppression of waterhyacinth in Florida USA by classical biological control agents

    Get PDF
    Waterhyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae), has been a global target for classical biological control efforts for decades. In Florida, herbicidal application is the primary control method employed, usually without regard for the activities of the three biological control agents introduced intentionally during the 1970s, namely Neochetina eichhorniae Warner, Neochetina bruchi, Hustache (Coleoptera:Curculionidae), and Niphograpta albiguttalis Warren (Lepidoptera: Crambidae). A series of field experiments from 2008 to 2010 was conducted at four Florida sites using an insecticide-check approach to quantify the current levels of suppression provided by these agents. In the field N. albiguttalis was rarely found while more than 99% of all Neochetina sp. adults were N. eichhorniae. Although it was not possible to disentangle the relative impacts of Neochetina sp. adults from larvae on individual plant variables, the larvae played a major role in reducing plant biomass and the number of inflorescences. Plots exposed to unrestricted herbivory contained 58.2% less biomass and produced 97.3% fewer inflorescences at the end of the experiments. Despite these large reductions, herbivory decreased waterhyacinth coverage by only 16.8% and most of this was attributed to a low-nutrient site where coverage was reduced disproportionately. Overall, coverage trended upwards during the course of the experiments and was always close to 100% when the plots were harvested. Although coverage is a somewhat arbitrary metric, especially for floating plants subject to compression and dispersion, it influences the perception of biological control efficacy which, in turn, directly influences herbicide management decisions in Florida. Despite waterhyacinth populations that now produce less than half as much biomass and up to 98% fewer seeds than before the deployment of biological control agents, the overall approach used to achieve maintenance control of the plant in Florida will probably not change unless new biological control agents, such as Megamelus scutellaris Berg (Hemiptera: Delphacidae), can reduce coverage significantly

    On exact solutions for quantum particles with spin S= 0, 1/2, 1 and de Sitter event horizon

    Full text link
    Exact wave solutions for particles with spin 0, 1/2 and 1 in the static coordinates of the de Sitter space-time model are examined in detail. Firstly, for a scalar particle, two pairs of linearly independent solutions are specified explicitly: running and standing waves. A known algorithm for calculation of the reflection coefficient RϵjR_{\epsilon j} on the background of the de Sitter space-time model is analyzed. It is shown that the determination of R_{\epsilon j} requires an additional constrain on quantum numbers \epsilon \rho / \hbar c >> j, where \rho is a curvature radius. When taken into account of this condition, the R_{\epsilon j} vanishes identically. It is claimed that the calculation of the reflection coefficient R_{\epsilon j} is not required at all because there is no barrier in an effective potential curve on the background of the de Sitter space-time. The same conclusion holds for arbitrary particles with higher spins, it is demonstrated explicitly with the help of exact solutions for electromagnetic and Dirac fields.Comment: 30 pages. This paper is an updated and more comprehensive version of the old paper V.M. Red'kov. On Particle penetrating through de Sitter horizon. Minsk (1991) 22 pages Deposited in VINITI 30.09.91, 3842 - B9

    Agricultural Research Service Weed Science Research: Past, Present, and Future

    Get PDF
    The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed-crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America\u27s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency\u27s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being

    Insights into the Complex Associations Between MHC Class II DRB Polymorphism and Multiple Gastrointestinal Parasite Infestations in the Striped Mouse

    Get PDF
    Differences in host susceptibility to different parasite types are largely based on the degree of matching between immune genes and parasite antigens. Specifically the variable genes of the major histocompatibility complex (MHC) play a major role in the defence of parasites. However, underlying genetic mechanisms in wild populations are still not well understood because there is a lack of studies which deal with multiple parasite infections and their competition within. To gain insights into these complex associations, we implemented the full record of gastrointestinal nematodes from 439 genotyped individuals of the striped mouse, Rhabdomys pumilio. We used two different multivariate approaches to test for associations between MHC class II DRB genotype and multiple nematodes with regard to the main pathogen-driven selection hypotheses maintaining MHC diversity and parasite species-specific co-evolutionary effects. The former includes investigations of a ‘heterozygote advantage’, or its specific form a ‘divergent-allele advantage’ caused by highly dissimilar alleles as well as possible effects of specific MHC-alleles selected by a ‘rare allele advantage’ ( = negative ‘frequency-dependent selection’). A combination of generalized linear mixed models (GLMMs) and co-inertia (COIA) analyses made it possible to consider multiple parasite species despite the risk of type I errors on the population and on the individual level. We could not find any evidence for a ‘heterozygote’ advantage but support for ‘divergent-allele’ advantage and infection intensity. In addition, both approaches demonstrated high concordance of positive as well as negative associations between specific MHC alleles and certain parasite species. Furthermore, certain MHC alleles were associated with more than one parasite species, suggesting a many-to-many gene-parasite co-evolution. The most frequent allele Rhpu-DRB*38 revealed a pleiotropic effect, involving three nematode species. Our study demonstrates the co-existence of specialist and generalist MHC alleles in terms of parasite detection which may be an important feature in the maintenance of MHC polymorphism

    Vascular Disruption and the Role of Angiogenic Proteins After Spinal Cord Injury

    Full text link

    Ecological genetics of Melaleuca quinquenervia (Myrtaceae): Population variation in Florida and its influence on performance of the biological control agent Oxyops vitiosa (Coleoptera: Curculionidae)

    Get PDF
    Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) was imported into Florida from Australia over a century ago as a landscape plant. A favorable climate and periodic wildfires helped M. quinquenervia thrive; it now occupies about 200,000 hectares in southern Florida. A biological control (i.e., biocontrol) program against M. quinquenervia has been initiated, but not all biocontrol releases are successful. Some scientists have argued that poor biocontrol agent success may relate to genetic differences among populations of invasive weeds. I tested this premise by determining (1) the number and origins of M. quinquenervia introductions into Florida, (2) whether multiple introduction events resulted in the partitioning of Florida\u27s M. quinquenervia populations into discrete biotypes, and (3) whether Oxyops vitiosa, an Australia snout beetle imported to control this weed, might discriminate among putative M. quinquenervia biotypes. Careful scrutiny of early horticultural catalogs and USDA plant introduction records suggested at least six distinct introduction events. Allozyme analyses indicated that the pattern of these introductions, and the subsequent redistribution of progeny, has resulted in geographic structuring of the populations in southern Florida. For example, trees on Florida\u27s Gulf Coast had a greater effective number of alleles and exhibited greater heterozygosity than trees on the Atlantic Coast. Essential oil yields from M. quinquenervia leaves followed a similar trend; Gulf Coast trees yielded nearly twice as much oil as Atlantic Coast trees when both were grown in a common garden. These differences were partially explained by the predominance of a chemical phenotype (chemotype) very rich in the sesquiterpene (E)-nerolidol in M. quinquenervia trees from the Gulf Coast, but rich in a mixture of the monoterpene 1,8-cineole and the sesquiterpene viridiflorol in trees from the Atlantic Coast. Performance of O. vitiosa differed dramatically in laboratory studies depending on the chemotype of the foliage they were fed. Larval survivorship was four-fold greater on the (E)-nerolidol chemotype. Growth was also greater, with adult O. vitiosa gaining nearly 50% more biomass on the (E)-nerolidol plants than on the second chemotype. The results of this study thus confirmed the premise that plant genotype can affect the population dynamics of insects released as weed biocontrols

    Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist

    Get PDF
    Biological control of Azolla filiculoides in South Africa with the Azolla specialist Stenopelmus rufinasus has been highly successful. However, field surveys showed that the agent utilized another Azolla species, thought to be the native Azolla pinnata subsp. africana, which contradicted host specificity trials. It is notoriously difficult to determine Azolla species based on morphology so genetic analyses were required to confirm the identity of the Azolla used by the agent. Extensive sampling was conducted and samples were sequenced at the trnL-trnF and trnG-trnR chloroplastic regions and the nuclear ITS1 region. Current literature reported A. filiculoides as the only Section Azolla species in southern Africa but 24 samples were identified as Azolla cristata, an introduced species within Section Azolla that was not used during host specificity trials. A. pinnata subsp. africana was only located at one site in southern Africa, while the alien A. pinnata subsp. asiatica was located at three. What was thought to be A. pinnata subsp. africana was in fact A. cristata, a closer relative of A. filiculoides and a suitable host according to specificity trials. This study confirms that S. rufinasus is a proficient Azolla taxonomist but also supports the use of molecular techniques for resolving taxonomic conundrums

    Population genetics comparison of <i>Lilioceris cheni</i> (Coleoptera: Chrysomelidae) colonies released onto <i>Dioscorea bulbifera</i> in Southeastern U.S.A.

    No full text
    Multiple importations of Lilioceris cheni, a defoliating beetle of the invasive air potato plant, were received by the ARS-Invasive Plant Research Laboratory from 2002 to 2012. The last two, in 2011 (China) and 2012 (Nepal), formed the basis of two colonies from which releases were made into six Southeastern U.S. States. Colony populations were examined using the mitochondrial COI sequence. Phylogenetics, evolutionary divergence, a haplotype network, population statistics, and migration models were generated for the two colonies, countries of origin, and the inferred populations (clades). Phylogenetics eliminated the possibility of cryptic speciation and alleviated the need for host-range testing of the 2012 Nepalese samples. Evolutionary divergence showed the Chinese colony was 1.65X as divergent as the Nepalese, but one Nepalese clade was the most distinctly different of all clades. AMOVA showed most (>70%) genetic variation resided within rather than between colonies. In contrast, AMOVAs showed high levels (>61.5%) of genetic variation between underlying clades with proportionally less variation within. The haplotype network showed broad agreement with the phylogeny. Clade C, from China, displayed the largest number of haplotypes and the largest mutation-scaled effective population size in MIGRATE software. The best MIGRATE models indicated that migration and descent followed the order of phylogenetic descent. The results suggest that the genetic diversity being offered to the adventive range by these very divergent colonies (and clades) is large and should support great ecological flexibility.</p

    Potential for negative interactions between successful arthropod and weed biological control programs: A case study with Lilioceris species

    No full text
    Successful biological control programs can have landscape-level effects on the management of intractable arthropod pests and weeds, improving ecosystem services and reducing both management costs and the widespread use of pesticides. However, biotic resistance can prevent biological control agents from establishing or limit their efficacy. We assessed the potential for biological control agents of the pest Lilioceris lilii, the lily leaf beetle, to attack L. cheni, a weed biological control agent for Dioscorea bulbifera, air potato. Both the suite of parasitoid biological control agents and L. cheni are contributing to the successful management of their respective targets. Thus, negative interactions between these species could potentially disrupt two effective biological control programs if range overlap occurs. Choice and no-choice tests were conducted with all three parasitoid species and the target and non-target beetles, and a phylogenetic tree was constructed to assess the relatedness of the Lilioceris species. The parasitoids displayed a clear preference for their host, L. lilii, and did not successfully parasitize L. cheni. Although interference between arthropod and weed biological control programs is not likely to be a common occurrence, practitioners in both subdisciplines should be cognizant of this possibility as new agents are developed
    corecore