36 research outputs found
Unfolding the Secrets of Small Cell Lung Cancer Progression: Novel Approaches and Insights Through Rapid Autopsies
The understanding of small cell lung cancer (SCLC) biology has increased dramatically in recent years, but the processes that allow SCLC to progress rapidly remain poorly understood. Here, we advocate the integration of rapid autopsies and preclinical models into SCLC research as a comprehensive strategy with the potential to revolutionize current treatment paradigms
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
Disruption of Mechanisms That Prevent Rereplication Triggers a DNA Damage Response
Eukaryotes replicate DNA once and only once per cell cycle due to multiple, partially overlapping mechanisms efficiently preventing reinitiation. The consequences of reinitiation are unknown. Here we show that the induction of rereplication by mutations in components of the prereplicative complex (origin recognition complex [ORC], Cdc6, and minichromosome maintenance proteins) causes a cell cycle arrest with activated Rad53, a large-budded morphology, and an undivided nucleus. Combining a mutation disrupting the Clb5-Orc6 interaction (ORC6-rxl) and a mutation stabilizing Cdc6 (CDC6ΔNT) causes a cell cycle delay with a similar phenotype, although this background is only partially compromised for rereplication control and does not exhibit overreplication detectable by fluorescence-activated cell sorting. We conducted a systematic screen that identified genetic requirements for the viability of these cells. ORC6-rxl CDC6ΔNT cells depend heavily on genes required for the DNA damage response and for double-strand-break repair by homologous recombination. Our results implicate an Mre11-Mec1-dependent pathway in limiting the extent of rereplication
A telomere-targeting drug depletes cancer initiating cells and promotes anti-tumor immunity in small cell lung cancer
Abstract There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2’-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC
Genomic and Functional Fidelity of Small Cell Lung Cancer Patient-Derived Xenografts
Small cell lung cancer (SCLC) patient-derived xenografts (PDX) can be generated from biopsies or circulating tumor cells (CTC), though scarcity of tissue and low efficiency of tumor growth have previously limited these approaches. Applying an established clinical-translational pipeline for tissue collection and an automated microfluidic platform for CTC enrichment, we generated 17 biopsy-derived PDXs and 17 CTC-derived PDXs in a 2-year timeframe, at 89% and 38% efficiency, respectively. Whole-exome sequencing showed that somatic alterations are stably maintained between patient tumors and PDXs. Early-passage PDXs maintain the genomic and transcriptional profiles of the founder PDX. In vivo treatment with etoposide and platinum (EP) in 30 PDX models demonstrated greater sensitivity in PDXs from EP-naive patients, and resistance to EP corresponded to increased expression of a MYC gene signature. Finally, serial CTC-derived PDXs generated from an individual patient at multiple time points accurately recapitulated the evolving drug sensitivities of that patient's disease. Collectively, this work highlights the translational potential of this strategy. SIGNIFICANCE: Effective translational research utilizing SCLC PDX models requires both efficient generation of models from patients and fidelity of those models in representing patient tumor characteristics. We present approaches for efficient generation of PDXs from both biopsies and CTCs, and demonstrate that these models capture the mutational landscape and functional features of the donor tumors. (C) 2018 AACR