4,278 research outputs found

    Energy potential of a tidal fence deployed near a coastal headland

    Get PDF
    Enhanced tidal streams close to coastal headlands appear to present ideal locations for the deployment of tidal energy devices. In this paper, the power potential of tidal streams near an idealized coastal headland with a sloping seabed is investigated using a near-field approximation to represent a tidal fence, i.e. a row of tidal devices, in a two-dimensional depth-averaged numerical model. Simulations indicate that the power extracted by the tidal fence is limited because the flow will bypass the fence, predominantly on the ocean side, as the thrust applied by the devices increases. For the dynamic conditions, fence placements and headland aspect ratios considered, the maximum power extracted at the fence is not related in any obvious way to the local undisturbed kinetic flux or the natural rate of energy dissipation due to bed friction (although both of these have been used in the past to predict the amount of power that may be extracted). The available power (equal to the extracted power net of vertical mixing losses in the immediate wake of devices) is optimized for devices with large area and small centre-to-centre spacing within the fence. The influence of energy extraction on the natural flow field is assessed relative to changes in the M2 component of elevation and velocity, and residual bed shear stress and tidal dispersion

    Modelling tidal energy extraction in a depth-averaged coastal domain

    Get PDF
    An extension of actuator disc theory is used to describe the properties of a tidal energy device, or row of tidal energy devices, within a depth-averaged numerical model. This approach allows a direct link to be made between an actual tidal device and its equivalent momentum sink in a depth-averaged domain. Extended actuator disc theory also leads to a measure of efficiency for an energy device in a tidal stream of finite Froude number, where efficiency is defined as the ratio of power extracted by one or more tidal devices to the total power removed from the tidal stream. To demonstrate the use of actuator disc theory in a depth-averaged model, tidal flow in a simple channel is approximated using the shallow water equations and the results are compared with the published analytical solutions. © 2010 © The Institution of Engineering and Technology

    Decuplet Baryon Structure from Lattice QCD

    Full text link
    The electromagnetic properties of the SU(3)-flavor baryon decuplet are examined within a lattice simulation of quenched QCD. Electric charge radii, magnetic moments, and magnetic radii are extracted from the E0 and M1 form factors. Preliminary results for the E2 and M3 moments are presented giving the first model independent insight to the shape of the quark distribution in the baryon ground state. As in our octet baryon analysis, the lattice results give evidence of spin-dependent forces and mass effects in the electromagnetic properties. The quark charge distribution radii indicate these effects act in opposing directions. Some baryon dependence of the effective quark magnetic moments is seen. However, this dependence in decuplet baryons is more subtle than that for octet baryons. Of particular interest are the lattice predictions for the magnetic moments of Ω−\Omega^- and Δ++\Delta^{++} for which new recent experimental measurements are available. The lattice prediction of the Δ++/p\Delta^{++}/p ratio appears larger than the experimental ratio, while the lattice prediction for the Ω−/p\Omega^-/p magnetic moment ratio is in good agreement with the experimental ratio.Comment: RevTeX manuscript, 34 pages plus 21 figures (available upon request

    Simulating chemistry efficiently on fault-tolerant quantum computers

    Get PDF
    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, \emph{Quantum Inf. Comput.}, \textbf{6}:81, 2006]. For a given approximation error Ï”\epsilon, arbitrary single-qubit gates can be produced fault-tolerantly and using a limited set of gates in time which is O(logâĄÏ”)O(\log \epsilon) or O(log⁥logâĄÏ”)O(\log \log \epsilon); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride.Comment: 33 pages, 18 figure

    Nucleon Axial Form Factor from Lattice QCD

    Full text link
    Results for the isovector axial form factors of the proton from a lattice QCD calculation are presented for both point-split and local currents. They are obtained on a quenched 163×2416^{3} \times 24 lattice at ÎČ=6.0\beta= 6.0 with Wilson fermions for a range of quark masses from strange to charm. We determine the finite lattice renormalization for both the local and point-split currents of heavy quarks. Results extrapolated to the chiral limit show that the q2q^2 dependence of the axial form factor agrees reasonably well with experiment. The axial coupling constant gAg_A calculated for the local and the point-split currents is about 6\% and 12\% smaller than the experimental value respectively.Comment: 8 pages, 5 figures (included in part 2), UK/93-0

    On the Effect of Quantum Interaction Distance on Quantum Addition Circuits

    Full text link
    We investigate the theoretical limits of the effect of the quantum interaction distance on the speed of exact quantum addition circuits. For this study, we exploit graph embedding for quantum circuit analysis. We study a logical mapping of qubits and gates of any Ω(log⁥n)\Omega(\log n)-depth quantum adder circuit for two nn-qubit registers onto a practical architecture, which limits interaction distance to the nearest neighbors only and supports only one- and two-qubit logical gates. Unfortunately, on the chosen kk-dimensional practical architecture, we prove that the depth lower bound of any exact quantum addition circuits is no longer Ω(log⁥n)\Omega(\log {n}), but Ω(nk)\Omega(\sqrt[k]{n}). This result, the first application of graph embedding to quantum circuits and devices, provides a new tool for compiler development, emphasizes the impact of quantum computer architecture on performance, and acts as a cautionary note when evaluating the time performance of quantum algorithms.Comment: accepted for ACM Journal on Emerging Technologies in Computing System

    Effects of imperfections for Shor's factorization algorithm

    Full text link
    We study effects of imperfections induced by residual couplings between qubits on the accuracy of Shor's algorithm using numerical simulations of realistic quantum computations with up to 30 qubits. The factoring of numbers up to N=943 show that the width of peaks, which frequencies allow to determine the factors, grow exponentially with the number of qubits. However, the algorithm remains operational up to a critical coupling strength Ï”c\epsilon_c which drops only polynomially with log⁥2N\log_2 N. The numerical dependence of Ï”c\epsilon_c on log⁥2N\log_2 N is explained by analytical estimates that allows to obtain the scaling for functionality of Shor's algorithm on realistic quantum computers with a large number of qubits.Comment: 10 pages, 10 figures, 1 table. Added references and new data. Erratum added as appendix. 1 Figure and 1 Table added. Research is available at http://www.quantware.ups-tlse.fr

    Unifying Gate Synthesis and Magic State Distillation

    Get PDF
    The leading paradigm for performing a computation on quantum memories can be encapsulated as distill-then-synthesize. Initially, one performs several rounds of distillation to create high-fidelity magic states that provide one good T gate, an essential quantum logic gate. Subsequently, gate synthesis intersperses many T gates with Clifford gates to realize a desired circuit. We introduce a unified framework that implements one round of distillation and multiquibit gate synthesis in a single step. Typically, our method uses the same number of T gates as conventional synthesis but with the added benefit of quadratic error suppression. Because of this, one less round of magic state distillation needs to be performed, leading to significant resource savings

    Baryon Octet to Decuplet Electromagnetic Transitions

    Full text link
    The electromagnetic transition moments of the SU(3)SU(3)-flavor baryon octet to decuplet are examined within a lattice simulation of quenched QCD. The magnetic transition moment for the N  γ→ΔN \; \gamma \to \Delta channel is found to be in agreement with recent experimental analyses. The lattice results indicate ÎŒpΔ/ÎŒp=0.88(15)\mu_{p \Delta} / \mu_p = 0.88(15). In terms of the Particle Data Group convention, fM1=0.231(41)f_{M1} = 0.231(41) GeV−1/2{}^{-1/2} for p  γ→Δ+p \; \gamma \to \Delta^+ transitions. Lattice predictions for the hyperon M1M1 transition moments agree with those of a simple quark model. However the manner in which the quarks contribute to the transition moments in the lattice simulation is different from that anticipated by quark model calculations. The scalar quadrupole form factor exhibits a behavior consistent with previous multipole analyses. The E2/M1E2/M1 multipole transition moment ratios are also determined. The lattice results suggest REM≡−GE2/GM1=+3±8R_{EM} \equiv -{\cal G}_{E2}/{\cal G}_{M1} = +3\pm 8 \% for p  γ→Δ+p \; \gamma \to \Delta^+ transitions. Of particular interest are significant nonvanishing signals for the E2/M1E2/M1 ratio in Ξ−\Xi^- and Σ−\Sigma^- electromagnetic transitions.Comment: PostScript file, 37 pages including figures. U. MD PP #93-085, U. KY PP #UK/92-09, TRIUMF PP #TRI-PP-92-12

    Study protocol for a multicentre longitudinal mixed methods study to explore the Outcomes of ChildrEn and fAmilies in the first year after paediatric Intensive Care: the OCEANIC study.

    Get PDF
    INTRODUCTION: Annually in the UK, 20 000 children become very ill or injured and need specialist care within a paediatric intensive care unit (PICU). Most children survive. However, some children and their families may experience problems after they have left the PICU including physical, functional and/or emotional problems. It is unknown which children and families experience such problems, when these occur or what causes them. The aim of this mixed-method longitudinal cohort study is to understand the physical, functional, emotional and social impact of children surviving PICU (aged: 1 month-17 years), their parents and siblings, during the first year after a PICU admission. METHODS AND ANALYSIS: A quantitative study involving 300 child survivors of PICU; 300 parents; and 150-300 siblings will collect data (using self-completion questionnaires) at baseline, PICU discharge, 1, 3, 6 and 12 months post-PICU discharge. Questionnaires will comprise validated and reliable instruments. Demographic data, PICU admission and treatment data, health-related quality of life, functional status, strengths and difficulties behaviour and post-traumatic stress symptoms will be collected from the child. Parent and sibling data will be collected on the impact of paediatric health conditions on the family's functioning capabilities, levels of anxiety and social impact of the child's PICU admission. Data will be analysed using descriptive and inferential statistics. Concurrently, an embedded qualitative study involving semistructured interviews with 24 enrolled families at 3 months and 9 months post-PICU discharge will be undertaken. Framework analysis will be used to analyse the qualitative data. ETHICS AND DISSEMINATION: The study has received ethical approval from the National Health Services Research Ethics Committee (Ref: 19/WM/0290) and full governance clearance. This will be the first UK study to comprehensively investigate physical, functional, emotional and social consequences of PICU survival in the first-year postdischarge.Clinical Trials Registration Number: ISRCTN28072812 [Pre-results]
    • 

    corecore