33 research outputs found

    Aligning self-assembled gelators by drying under shear

    Get PDF
    We show how drying under shear can be used to prepare aligned fibres and worm-like micelles from low molecular weight gelators. Shearing followed by drying leads to the dealignment before the water can be removed; continuous shear whilst drying is required to maintain the alignment. Combining a slow pH change with continuous shear allows alignment of the gelling fibres, which can then be dried

    Early experience with a new technique and technology designed for the study of pulsatile cardiopulmonary bypass in the rat

    No full text
    The benefits of pulsatile flow during the period of cardiopulmonary bypass (CPB) applied during open-heart surgery remains controversial. We have developed a rodent (rat) model of CBP that has been designed to functionally mimic the clinical setting, principally, but not solely, for the study of pulsatile CPB. The successful development of this model centres on the design of the bypass circuitry and the surgical approach employed. The entire circuit is similar to clinical equipment in terms of its construction, configuration, performance, material surface area to blood volume ratio, and priming volume to blood volume ratio. The overall priming volume of the perfusion circuitry is less than 12 ml. Early studies confirm that the pumping technology functions well, gas exchange was adequate at all times, and blood pressure exhibited a normal CPB profile and haemodynamic response to pulsatile blood flow. We conclude that this is an effective tool for investigating the pathophysiology of pulsatile blood flow during CPB
    corecore