92 research outputs found

    Effects of Intermittent Pneumatic Compression on Delayed Onset Muscle Soreness (DOMS) in Long Distance Runners

    Get PDF
    International Journal of Exercise Science 13(2): 75-86, 2020. The purpose of this study was to observe the effectiveness of intermittent pneumatic compression (IPC) on reducing C-reactive protein (CRP) and DOMS after long distance running.Ten distance runners, five males and five females, ages 20-53 years performed two 20-mile runs at 70% VO2max. Each run was followed by either no treatment (control) or IPC treatment for five consecutive days. For the IPC run, participants were treated for one hour immediately following the run and daily for five more days thereafter. On control runs, participants did not receive any treatment. Serum CRP was measured pre- and post-run, and daily thereafter for five days for both trials. Results indicated no significant difference (p \u3e 0.05) between control and treatment runs in CRP levels. Subjective pain ratings indicated no significant difference in pain between control and treatment runs. In conclusion, there appear to be no substantial benefits of IPC in promoting recovery

    Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites

    Get PDF
    Biodegradable containers support zero-waste initiatives when alternative end-of-life scenarios are available (e.g., composting, bio digestion). Thermoplastic starch (TPS) has emerged as a readily biodegradable and inexpensive biomaterial that can replace traditional plastics in applications such as food service ware and packaging. This study has two aims. First, demonstrate the thermoformability of starch/polycaprolactone (PCL) as a thermoplastic material with varying starch loadings. Second, incorporate biochar as a sustainable filler that can potentially lower the cost and enhance compostability. Biochar is a stable form of carbon produced by thermochemical conversion of organic biomass, such as food waste, and its incorporation into consumer products could promote a circular economy. Thermoformed samples were successfully made with starch contents from 40 to 60 wt.% without biochar. Increasing the amount of starch increased the viscosity of the material, which in turn affected the compression molding (sheet manufacturing) and thermoforming conditions. PCL content reduced the extent of biodegradation in soil burial experiments and increased the strength and elongation at break of the material. A blend of 50:50 starch:PCL was selected for incorporating biochar. Thermoformed containers were manufactured with 10, 20, and 30 wt.% biochar derived from waste coffee grounds. The addition of biochar decreased the elongation at break but did not significantly affect the modulus of elasticity or tensile strength. The results demonstrate the feasibility of using starch and biochar for the manufacturing of thermoformed containers

    Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and non-standardized diets:Plasma lipidome of dog breeds using UHPLC-HRM

    Get PDF
    INTRODUCTION AND OBJECTIVES: The purpose of this study was to use high accurate mass metabolomic profiling to investigate differences within a phenotypically diverse canine population, with breed-related morphological, physiological and behavioural differences. Previously, using a broad metabolite fingerprinting approach, lipids appear to dominate inter- and intra- breed discrimination. The purpose here was to use Ultra High Performance Liquid Chromatography–High Resolution Mass Spectrometry (UHPLC–HRMS) to identify in more detail, inter-breed signatures in plasma lipidomic profiles of home-based, client-owned dogs maintained on different diets and fed according to their owners’ feeding regimens. METHODS: Nine dog breeds were recruited in this study (Beagle, Chihuahua, Cocker Spaniel, Dachshund, Golden Retriever, Greyhound, German Shepherd, Labrador Retriever and Maltese: 7–12 dogs per breed). Metabolite profiling on a MTBE lipid extract of fasted plasma was performed using UHPLC-HRMS. RESULTS: Multivariate modelling and classification indicated that the main source of lipidome variance was between the three breeds Chihuahua, Dachshund and Greyhound and the other six breeds, however some intra-breed variance was evident in Labrador Retrievers. Metabolites associated with dietary intake impacted on breed-associated variance and following filtering of these signals out of the data-set unique inter-breed lipidome differences for Chihuahua, Golden Retriever and Greyhound were identified. CONCLUSION: By using a phenotypically diverse home-based canine population, we were able to show that high accurate mass lipidomics can enable identification of metabolites in the first pass plasma profile, capturing distinct metabolomic variability associated with genetic differences, despite environmental and dietary variability. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-016-1152-0) contains supplementary material, which is available to authorized users

    Characterisation of the main drivers of intra- and inter- breed variability in the plasma metabolome of dogs

    Get PDF
    INTRODUCTION: Dog breeds are a consequence of artificial selection for specific attributes. These closed genetic populations have metabolic and physiological characteristics that may be revealed by metabolomic analysis. OBJECTIVES: To identify and characterise the drivers of metabolic differences in the fasted plasma metabolome and then determine metabolites differentiating breeds. METHODS: Fasted plasma samples were collected from dogs maintained under two environmental conditions (controlled and client-owned at home). The former (n = 33) consisted of three breeds (Labrador Retriever, Cocker Spaniel and Miniature Schnauzer) fed a single diet batch, the latter (n = 96), client-owned dogs consisted of 9 breeds (Beagle, Chihuahua, Cocker Spaniel, Dachshund, Golden Retriever, Greyhound, German Shepherd, Labrador Retriever and Maltese) consuming various diets under differing feeding regimens. Triplicate samples were taken from Beagle (n = 10) and Labrador Retriever (n = 9) over 3 months. Non-targeted metabolite fingerprinting was performed using flow infusion electrospray-ionization mass spectrometry which was coupled with multivariate data analysis. Metadata factors including age, gender, sexual status, weight, diet and breed were investigated. RESULTS: Breed differences were identified in the plasma metabolome of dogs housed in a controlled environment. Triplicate samples from two breeds identified intra-individual variability, yet breed separation was still observed. The main drivers of variance in dogs maintained in the home environment were associated with breed and gender. Furthermore, metabolite signals were identified that discriminated between Labrador Retriever and Cocker Spaniels in both environments. CONCLUSION: Metabolite fingerprinting of plasma samples can be used to investigate breed differences in client-owned dogs, despite added variance of diet, sexual status and environment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-016-0997-6) contains supplementary material, which is available to authorized users

    Application of Intervention Mapping to develop a community-based health promotion pre-pregnancy intervention for adolescent girls in rural South Africa: Project Ntshembo (Hope).

    Get PDF
    BACKGROUND: South Africa (SA) is undergoing multiple transitions with an increasing burden of non-communicable diseases and high levels of overweight and obesity in adolescent girls and women. Adolescence is key to addressing trans-generational risk and a window of opportunity to intervene and positively impact on individuals' health trajectories into adulthood. Using Intervention Mapping (IM), this paper describes the development of the Ntshembo intervention, which is intended to improve the health and well-being of adolescent girls in order to limit the inter-generational transfer of risk of metabolic disease, in particular diabetes risk. METHODS: This paper describes the application of the first four steps of IM. Evidence is provided to support the selection of four key behavioural objectives: viz. to eat a healthy, balanced diet, increase physical activity, reduce sedentary behaviour, and promote reproductive health. Appropriate behaviour change techniques are suggested and a theoretical framework outlining components of relevant behaviour change theories is presented. It is proposed that the Ntshembo intervention will be community-based, including specialist adolescent community health workers who will deliver a complex intervention comprising of individual, peer, family and community mobilisation components. CONCLUSIONS: The Ntshembo intervention is novel, both in SA and globally, as it is: (1) based on strong evidence, extensive formative work and best practice from evaluated interventions; (2) combines theory with evidence to inform intervention components; (3) includes multiple domains of influence (community through to the individual); (4) focuses on an at-risk target group; and (5) embeds within existing and planned health service priorities in SA

    Design and Characterisation of a Randomized Food Intervention That Mimics Exposure to a Typical UK Diet to Provide Urine Samples for Identification and Validation of Metabolite Biomarkers of Food Intake

    Get PDF
    Poor dietary choices are major risk factors for obesity and non-communicable diseases, which places an increasing burden on healthcare systems worldwide. To monitor the effectiveness of healthy eating guidelines and strategies, there is a need for objective measures of dietary intake in community settings. Metabolites derived from specific foods present in urine samples can provide objective biomarkers of food intake (BFIs). Whilst the majority of biomarker discovery/validation studies have investigated potential biomarkers for single foods only, this study considered the whole diet by using menus that delivered a wide range of foods in meals that emulated conventional UK eating patterns. Fifty-one healthy participants (range 19–77 years; 57% female) followed a uniquely designed, randomized controlled dietary intervention, and provided spot urine samples suitable for discovery of BFIs within a real-world context. Free-living participants prepared and consumed all foods and drinks in their own homes and were asked to follow the protocols for meal consumption and home urine sample collection. This study also assessed the robustness, and impact on data quality, of a minimally invasive urine collection protocol. Overall the study design was well-accepted by participants and concluded successfully without any drop outs. Compliance for urine collection, adherence to menu plans, and observance of recommended meal timings, was shown to be very high. Metabolome analysis using mass spectrometry coupled with data mining demonstrated that the study protocol was well-suited for BFI discovery and validation. Novel, putative biomarkers for an extended range of foods were identified including legumes, curry, strongly-heated products, and artificially sweetened, low calorie beverages. In conclusion, aspects of this study design would help to overcome several current challenges in the development of BFI technology. One specific attribute was the examination of BFI generalizability across related food groups and across different preparations and cooking methods of foods. Furthermore, the collection of urine samples at multiple time points helped to determine which spot sample was optimal for identification and validation of BFIs in free-living individuals. A further valuable design feature centered on the comprehensiveness of the menu design which allowed the testing of biomarker specificity within a biobank of urine samples

    Developing a food exposure and urine sampling strategy for dietary exposure biomarker validation in free-living individuals

    Get PDF
    SCOPE: Dietary choices modulate the risk of chronic diseases and improving diet is a central component of public health strategies. Food-derived metabolites present in urine could provide objective biomarkers of dietary exposure. To assist biomarker validation we aimed to develop a food intervention strategy mimicking a typical annual diet over a short period of time and assessed urine sampling protocols potentially suitable for future deployment of biomarker technology in free-living populations. METHODS AND RESULTS: Six different menu plans representing comprehensively a typical UK annual diet that were split into two dietary experimental periods. Free-living adult participants (n = 15 and n = 36, respectively) were provided with all their food, as a series of menu plans, over a period of 3 consecutive days. Multiple spot urine samples were collected and stored at home. CONCLUSION: We established a successful food exposure strategy following a conventional UK eating pattern, which was suitable for biomarker validation in free-living individuals. The urine sampling procedure was acceptable for volunteers and delivered samples suitable for biomarker quantification. Our study design provides scope for validation of existing biomarker candidates and potentially for discovery of new biomarker-leads and should help inform the future deployment of biomarker technology for habitual dietary exposure measurement

    Developing community-based urine sampling methods to deploy biomarker technology for the assessment of dietary exposure

    Get PDF
    Objective: Obtaining objective, dietary exposure information from individuals is challenging because of the complexity of food consumption patterns and the limitations of self-reporting tools (e.g., FFQ and diet diaries). This hinders research efforts to associate intakes of specific foods or eating patterns with population health outcomes. Design: Dietary exposure can be assessed by the measurement of food-derived chemicals in urine samples. We aimed to develop methodologies for urine collection that minimised impact on the day-to-day activities of participants but also yielded samples that were data-rich in terms of targeted biomarker measurements. Setting: Urine collection methodologies were developed within home settings. Participants: Different cohorts of free-living volunteers. Results: Home collection of urine samples using vacuum transfer technology was deemed highly acceptable by volunteers. Statistical analysis of both metabolome and selected dietary exposure biomarkers in spot urine collected and stored using this method showed that they were compositionally similar to urine collected using a standard method with immediate sample freezing. Even without chemical preservatives, samples can be stored under different temperature regimes without any significant impact on the overall urine composition or concentration of forty-six exemplar dietary exposure biomarkers. Importantly, the samples could be posted directly to analytical facilities, without the need for refrigerated transport and involvement of clinical professionals. Conclusions: This urine sampling methodology appears to be suitable for routine use and may provide a scalable, cost-effective means to collect urine samples and to assess diet in epidemiological studies

    Spot and Cumulative Urine Samples Are Suitable Replacements for 24-Hour Urine Collections for Objective Measures of Dietary Exposure in Adults Using Metabolite Biomarkers

    Get PDF
    BACKGROUND: Measurement of multiple food intake exposure biomarkers in urine may offer an objective method for monitoring diet. The potential of spot and cumulative urine samples that have reduced burden on participants as replacements for 24-h urine collections has not been evaluated. OBJECTIVE: The aim of this study was to determine the utility of spot and cumulative urine samples for classifying the metabolic profiles of people according to dietary intake when compared with 24-h urine collections in a controlled dietary intervention study. METHODS: Nineteen healthy individuals (10 male, 9 female, aged 21-65 y, BMI 20-35 kg/m2) each consumed 4 distinctly different diets, each for 1 wk. Spot urine samples were collected ∼2 h post meals on 3 intervention days/wk. Cumulative urine samples were collected daily over 3 separate temporal periods. A 24-h urine collection was created by combining the 3 cumulative urine samples. Urine samples were analyzed with metabolite fingerprinting by both high-resolution flow infusion electrospray mass spectrometry (FIE-HRMS) and proton nuclear magnetic resonance spectroscopy (1H-NMR). Concentrations of dietary intake biomarkers were measured with liquid chromatography triple quadrupole mass spectrometry and by integration of 1H-NMR data. RESULTS: Cross-validation modeling with 1H-NMR and FIE-HRMS data demonstrated the power of spot and cumulative urine samples in predicting dietary patterns in 24-h urine collections. Particularly, there was no significant loss of information when post-dinner (PD) spot or overnight cumulative samples were substituted for 24-h urine collections (classification accuracies of 0.891 and 0.938, respectively). Quantitative analysis of urine samples also demonstrated the relation between PD spot samples and 24-h urines for dietary exposure biomarkers. CONCLUSIONS: We conclude that PD spot urine samples are suitable replacements for 24-h urine collections. Alternatively, cumulative samples collected overnight predict similarly to 24-h urine samples and have a lower collection burden for participants
    • …
    corecore