4,371 research outputs found
The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents
We consider the secret key generation problem when sources are randomly
excited by the sender and there is a noiseless public discussion channel. Our
setting is thus similar to recent works on channels with action-dependent
states where the channel state may be influenced by some of the parties
involved. We derive single-letter expressions for the secret key capacity
through a type of source emulation analysis. We also derive lower bounds on the
achievable reliability and secrecy exponents, i.e., the exponential rates of
decay of the probability of decoding error and of the information leakage.
These exponents allow us to determine a set of strongly-achievable secret key
rates. For degraded eavesdroppers the maximum strongly-achievable rate equals
the secret key capacity; our exponents can also be specialized to previously
known results.
In deriving our strong achievability results we introduce a coding scheme
that combines wiretap coding (to excite the channel) and key extraction (to
distill keys from residual randomness). The secret key capacity is naturally
seen to be a combination of both source- and channel-type randomness. Through
examples we illustrate a fundamental interplay between the portion of the
secret key rate due to each type of randomness. We also illustrate inherent
tradeoffs between the achievable reliability and secrecy exponents. Our new
scheme also naturally accommodates rate limits on the public discussion. We
show that under rate constraints we are able to achieve larger rates than those
that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on
Information Theory; Revised in Oct 201
Rank Minimization over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations
This paper establishes information-theoretic limits in estimating a finite
field low-rank matrix given random linear measurements of it. These linear
measurements are obtained by taking inner products of the low-rank matrix with
random sensing matrices. Necessary and sufficient conditions on the number of
measurements required are provided. It is shown that these conditions are sharp
and the minimum-rank decoder is asymptotically optimal. The reliability
function of this decoder is also derived by appealing to de Caen's lower bound
on the probability of a union. The sufficient condition also holds when the
sensing matrices are sparse - a scenario that may be amenable to efficient
decoding. More precisely, it is shown that if the n\times n-sensing matrices
contain, on average, \Omega(nlog n) entries, the number of measurements
required is the same as that when the sensing matrices are dense and contain
entries drawn uniformly at random from the field. Analogies are drawn between
the above results and rank-metric codes in the coding theory literature. In
fact, we are also strongly motivated by understanding when minimum rank
distance decoding of random rank-metric codes succeeds. To this end, we derive
distance properties of equiprobable and sparse rank-metric codes. These
distance properties provide a precise geometric interpretation of the fact that
the sparse ensemble requires as few measurements as the dense one. Finally, we
provide a non-exhaustive procedure to search for the unknown low-rank matrix.Comment: Accepted to the IEEE Transactions on Information Theory; Presented at
IEEE International Symposium on Information Theory (ISIT) 201
Searching for tetraquarks on the lattice
We address the question whether the lightest scalar mesons sigma and kappa
are tetraquarks. We present a search for possible light tetraquark states with
J^PC=0^++ and I=0, 1/2, 3/2, 2 in the dynamical and the quenched lattice
simulations using tetraquark interpolators. In all the channels, we unavoidably
find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back
momentum k=0,2*pi/L,.. . However, we find an additional light state in the I=0
and I=1/2 channels, which may be related to the observed resonances sigma and
kappa with a strong tetraquark component. In the exotic repulsive channels I=2
and I=3/2, where no resonance is observed, we find no light state in addition
to the scattering states.Comment: 3 pages, 1 figure, proceedings of Lepton-Photon 2009, Hambur
Glueball matrix elements on anisotropic lattices
We describe a lattice calculation of the matrix elements relevant for
glueball production in radiative decays. The techniques for such a
calculation on anisotropic lattices with an improved action are outlined. We
present preliminary results showing the efficacy of the computational method.Comment: 3 pages (LaTeX), 3 figures (PostScript), Presented at Lattice '9
Crystallization of Yamato 980459 at 0.5 GPA: Are Residual Liquids Like QUE 94201?
The Martian basaltic meteorites Y980459 and QUE94201 (henceforth referred to as Y98 and QUE respectively) are thought to represent magmatic liquid compositions, rather than being products of protracted crystallization and accumulation like the majority of other martian meteorites. Both meteorite compositions have been experimentally crystallized at 1 bar, and liquidus phases were found to match corresponding mineral core compositions in the meteorites, consistent with the notion that these meteorites represent bona fide melts. They also represent the most primitive and most evolved basaltic martian samples, respectively. Y98 has Mg# (molar Mg/Mg+Fe) approximates 65, and lacks plagioclase; whereas QUE has Mg# approximates 40, and lacks olivine. However they share important geochemical characteristics (e.g. superchondritic CaO/Al2O3, very high epsilon(sub Nd) and low Sr-87/Sr-87) that suggest they sample a similar highly depleted mantle reservoir. As such, they represent likely endmembers of martian magmatic liquid compositions, and it is natural to seek petrogenetic linkages between the two. We make no claim that the actual meteorites themselves share a genetic link (the respective ages rule that out); we are exploring only in general whether primitive martian liquids like Y98 could evolve to liquids resembling QUE. Both experimental and computational efforts have been made to determine if there is indeed such a link. Recent petrological models at 1 bar generated using MELTS suggest that a QUE-like melt can be derived from a parental melt with a Y98 composition. However, experimental studies at 1 bar have been less successful at replicating this progression. Previous experimental crystallization studies of Y98 by our group at 0.5 GPa have produced melt compositions approaching that of QUE, although these results were complicated by the presence of small, variable amounts of H2O in some of the runs owing to the use of talc/pyrex experimental assemblies. Therefore we have repeated the four experiments, augmented with additional runs, all using BaCO3 cell assemblies, which are devoid of water, and these new experiments supersede those reported earlier. Here we report results of experiments simulating equilibrium crystallization; fractional crystallization experiments are currently underway
Vacuum Properties of Mesons in a Linear Sigma Model with Vector Mesons and Global Chiral Invariance
We present a two-flavour linear sigma model with global chiral symmetry and
vector and axial-vector mesons. We calculate pion-pion scattering lengths and
the decay widths of scalar, vector, and axial-vector mesons. It is demonstrated
that vector and axial-vector meson degrees of freedom play an important role in
these low-energy processes and that a reasonable theoretical description
requires globally chirally invariant terms other than the vector meson mass
term. An important question for meson vacuum phenomenology is the quark content
of the physical scalar f0(600) and a0(980) mesons. We investigate this question
by assigning the quark-antiquark sigma and a0 states of our model with these
physical mesons. We show via a detailed comparison with experimental data that
this scenario can describe all vacuum properties studied here except for the
decay width of the sigma, which turns out to be too small. We also study the
alternative assignment f0(1370) and a0(1450) for the scalar mesons. In this
case the decay width agrees with the experimental value, but the pion-pion
scattering length is too small. This indicates the necessity to
extend our model by additional scalar degrees of freedom.Comment: 22 pages, 6 figure
Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study
The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism
- …