35 research outputs found

    Influence of emulsifier type on the spray-drying properties of model infant formula emulsions

    Get PDF
    The objective of this study was to compare the drying performance and physicochemical properties of model infant formula (IF) emulsions containing 43, 96 and 192 g L−1 protein, oil and maltodextrin (MD), respectively, prepared using different emulsifier systems. Emulsions were stabilised using either whey protein isolate (WPI), whey protein hydrolysate (WPH; DH 8%), WPH + CITREM (9 g L−1), WPH + lecithin (5 g L−1) or WPH conjugated with maltodextrin (DE 12) (WPH-MD). Homogenised emulsions had 32% solids content and oil globules with mean volume diameter WPH + LEC > WPH > WPH- MD > WPI, WPI > WPH > WPH- MD > WPH + LEC > WPH + CIT and WPH- MD > WPI > WPH > WPH + LEC > WPH + CIT, respectively. Additionally, differences in wettability, surface topography and oil globule distribution within the powder matrix and in reconstituted powders were linked to the emulsifier system used. Inclusion of the WPH-MD conjugate in the formulation of IF powder significantly improved drying behaviour and physicochemical properties of the resultant powder, as evidenced by lowest powder build-up during drying and greatest emulsion quality on reconstitution, compared to the other model formula systems

    Effect of pH and heat treatment on viscosity and heat coagulation properties of milk protein concentrate

    Get PDF
    peer-reviewedThe effect of pH, adjusted using either hydrochloric acid (HCl), citric acid or sodium hydroxide, on calcium ion (Ca2+) activity, and consequent changes in viscosity and heat coagulation time (HCT) of milk protein concentrate (MPC) was investigated. Reducing the pH of MPC dispersions resulted in a reduction in their viscosity, which subsequently increased during heat treatment. The maximum heat stability of MPC was observed at pH 6.7. Reducing the pH of MPC from 6.7 to 6.2 resulted in a significant (P < 0.05) increase in Ca2+ activity, and reduction in HCT. Such changes were more extensive using HCl compared with citric acid. Increasing the pH greater than 6.7 also led to a reduction in HCT but a decrease in Ca2+ activity. These results demonstrate the importance of pH adjustment, and choice of acidulant, on Ca2+ activity, viscosity, and heat coagulation properties of MPC concentrates during processing

    A review of the analytical approaches used for studying the structure, interactions and stability of emulsions in nutritional beverage systems

    Get PDF
    Nutritional beverage emulsions contain water and oil, stabilised by surfactants, and are both diverse and complex. Their susceptibility to changes induced by manufacturing processes and on storage, results in challenges with their stability, quality and shelf-life. An understanding of the relationship between structure and stability of an emulsion is essential to designing and competently formulating food products with the desired nutritional functionality and sensory properties, while achieving the required shelf-life. This article critically reviews a selection of commonly-used analytical approaches focused on characterisation of emulsion structure in the context of emulsion formation, techno-functional properties and stability to intrinsic and environmental factors

    Modelling the changes in viscosity during thermal treatment of milk protein concentrate using kinetic data

    Get PDF
    peer-reviewedThis work aimed to model the effect of heat treatment on viscosity of milk protein concentrate (MPC) using kinetic data. MPC obtained after ultrafiltration was subjected to different time-temperature heat treatment combinations. Heat treatment at high temperature and short time (i.e., 100 or 120 °C×30 s) led to a significant increase in viscosity in MPC systems. Second-order reaction kinetic models proved a better fit than zero- or first-order models when fitted for viscosity response to heat treatment. A distinct deviation in the slope of the Arrhenius plot at 77.9 °C correlated to a significant increase in the rate of viscosity development at temperatures above this, confirming the transition of protein denaturation from the unfolding to the aggregation stage. This study demonstrated that heat-induced viscosity of MPC as a result of protein denaturation/aggregation can be successfully modelled in response to thermal treatment, providing useful new information in predicting the effect of thermal treatment on viscosity of MPC

    Short communication: Multi-component interactions causing solidification during industrial-scale manufacture of pre-crystallized acid whey powders

    Get PDF
    peer-reviewedAcid whey (AW) is the liquid co-product arising from acid-induced precipitation of casein from skim milk. Further processing of AW is often challenging due to its high mineral content, which can promote aggregation of whey proteins, which contributes to high viscosity of the liquid concentrate during subsequent lactose crystallization and drying steps. This study focuses on mineral precipitation, protein aggregation, and lactose crystallization in liquid AW concentrates (∼55% total solids), and on the microstructure of the final powders from 2 independent industrial-scale trials. These AW concentrates were observed to solidify either during processing or during storage (24 h) of pre-crystallized concentrate. The more rapid solidification in the former was associated with a greater extent of lactose crystallization and a higher ash-to-protein ratio in that concentrate. Confocal laser scanning microscopy analysis indicated the presence of a loose network of protein aggregates (≤10 µm) and lactose crystals (100–300 µm) distributed throughout the solidified AW concentrate. Mineral-based precipitate was also evident, using scanning electron microscopy, at the surface of AW powder particles, indicating the formation of insoluble calcium phosphate during processing. These results provide new information on the composition- and process-dependent physicochemical changes that are useful in designing and optimizing processes for AW

    Influence of protein standardisation media and heat treatment on viscosity and related physicochemical properties of skim milk concentrate

    Get PDF
    peer-reviewedThe effects of heat treatment and protein standardisation on the physical properties of skim milk concentrates were determined. Protein standardisation was carried out by the addition of lactose or milk permeate to skim milk. Unstandardised and standardised skim milk was subjected to heat treatment temperatures of 90 or 120 °C prior to evaporation whereafter the solids content was increased to 46% (w/w). Viscosity data showed non-standardised concentrates had the highest viscosity, followed by skim standardised with milk permeate followed by that standardised with lactose. Thermal treatment at 120 °C also resulted in a higher viscosity than that at 90 °C for all concentrates. Particle size data of evaporated skim milk showed a bimodal size distribution for skim milk standardised with liquid milk permeate, compared with monomodal distribution profiles for unstandardised skim milk and lactose standardised skim milk. Overall, this study showed that protein standardisation and standardisation media significantly affected concentrate properties

    Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors

    Get PDF
    Methamphetamine (MA) is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg) on working memory using the radial 8-arm maze (RAM) across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1), dopamine transporter (DAT) and tyrosine hydroxylase (TH); and memory markers, protein kinase M zeta (PKMζ) and protein kinase C zeta (PKCζ). Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA

    The use of inline high-shear rotor-stator mixing for preparation of high-solids milk-protein-stabilised oil-in-water emulsions with different protein:fat ratios

    Get PDF
    The emulsification of refined palm oil (RPO) in a continuous phase consisting of skim milk concentrate (SMC) and maltodextrin with a dextrose equivalent value of 17 (MD17) to produce fat-filled milk emulsions (FFMEs), was studied. A novel inline high-shear mixing (IHSM) method was used to produce emulsions, and three protein contents were investigated at a fixed RPO content of 12%: low (7.7%), medium (10.5%) and high (13%). Pressure drop measurement was used as an inline approach to determine viscosity using the Hagen-Poiseuille equation. In addition, offline viscometry, particle size and emulsion stability analyses were performed. Emulsion fat droplet size decreased significantly (P < 0.05) as a function of number of passes through the IHSM, due to an effective increase in residence time. Furthermore, inline pressure drop data demonstrated that the emulsification process displayed two distinct stages: (i) oil injection, and (ii) reduction in fat droplet size, irrespective of protein content

    Monitoring of pilot-scale induction processes for dairy powders using inline and offline approaches

    Get PDF
    The induction of two dairy powders, skim milk powder (SMP; low-protein content), and milk protein isolate (MPI, high-protein content), was studied. The powder induction approaches investigated were (1) eductor alone, (2) eductor with a static mixer, and (3) eductor with high shear inline mixing. Measurement of pressure drop, from which viscosity was determined inline using the Hagen-Poiseuille equation, offline viscometry and particle size analyses were performed. High shear inline mixing provided the most efficient induction of powders. In addition, more rapid powder induction, as observed from particle size analysis, was achieved for SMP in comparison to MPI, owing to its better rehydration properties. Inline pressure drop data demonstrated that dissolution of MPI had two distinct phases: (i) powder introduction, and (ii) powder breakdown, irrespective of configuration and concentration employed
    corecore