14 research outputs found

    Including Physics in Deep Learning -- An example from 4D seismic pressure saturation inversion

    Full text link
    Geoscience data often have to rely on strong priors in the face of uncertainty. Additionally, we often try to detect or model anomalous sparse data that can appear as an outlier in machine learning models. These are classic examples of imbalanced learning. Approaching these problems can benefit from including prior information from physics models or transforming data to a beneficial domain. We show an example of including physical information in the architecture of a neural network as prior information. We go on to present noise injection at training time to successfully transfer the network from synthetic data to field data.Comment: 5 pages, 5 figures, workshop, extended abstract, EAGE 2019 Workshop Programme, European Association of Geoscientists and Engineer

    Information Theory Considerations in Patch-based Training of Deep Neural Networks on Seismic Time-Series

    Get PDF
    Recent advances in machine learning relies on convolutional deep neural networks. These are often trained on cropped image patches. Pertaining to non-stationary seismic signals this may introduce low frequency noise and non-generalizability

    Gaussian Mixture Models for Robust Unsupervised Scanning-Electron Microscopy Image Segmentation of North Sea Chalk

    Get PDF
    Scanning-Electron images from North Sea Chalk are studied for important rock properties. To relieve this manual labor, we investigated several standard image processing methods that underperformed on complicated chalk. Due to the lack of manually labeled data, deep neural networks could not be adequately applied. Gaussian Mixture Models learnt a two-fold representation that separated the background well from the rock. Subsequent morphological filtering cleans up the prediction and enables automatic analysis. <br

    Improving medium-range ensemble weather forecasts with hierarchical ensemble transformers

    Full text link
    Statistical post-processing of global ensemble weather forecasts is revisited by leveraging recent developments in machine learning. Verification of past forecasts is exploited to learn systematic deficiencies of numerical weather predictions in order to boost post-processed forecast performance. Here, we introduce PoET, a post-processing approach based on hierarchical transformers. PoET has 2 major characteristics: 1) the post-processing is applied directly to the ensemble members rather than to a predictive distribution or a functional of it, and 2) the method is ensemble-size agnostic in the sense that the number of ensemble members in training and inference mode can differ. The PoET output is a set of calibrated members that has the same size as the original ensemble but with improved reliability. Performance assessments show that PoET can bring up to 20% improvement in skill globally for 2m temperature and 2% for precipitation forecasts and outperforms the simpler statistical member-by-member method, used here as a competitive benchmark. PoET is also applied to the ENS10 benchmark dataset for ensemble post-processing and provides better results when compared to other deep learning solutions that are evaluated for most parameters. Furthermore, because each ensemble member is calibrated separately, downstream applications should directly benefit from the improvement made on the ensemble forecast with post-processing

    Rapid seismic domain transfer: Seismic velocity inversion and modeling using deep generative neural networks

    Get PDF
    Traditional physics-based approaches to infer sub-surface properties such as full-waveform inversion or reflectivity inversion are time-consuming and computationally expensive. We present a deep-learning technique that eliminates the need for these computationally complex methods by posing the problem as one of domain transfer. Our solution is based on a deep convolutional generative adversarial network and dramatically reduces computation time. Training based on two different types of synthetic data produced a neural network that generates realistic velocity models when applied to a real dataset. The system's ability to generalize means it is robust against the inherent occurrence of velocity errors and artifacts in both training and test datasets.Comment: Extended abstract submitted to EAGE 2018, 5 pages, 3 figure

    Machine Learning in Geoscience Applications of Deep Neural Networks in 4D Seismic Data Analysis

    No full text
    corecore