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ABSTRACT
In this work, we tackle the challenge of quantitative estimation of reservoir dynamic
property variations during a period of production, directly from four-dimensional
seismic data in the amplitude domain. We employ a deep neural network to invert
four-dimensional seismic amplitude maps to the simultaneous changes in pressure,
water and gas saturations. The method is applied to a real field data case, where,
as is common in such applications, the data measured at the wells are insufficient
for properly training deep neural networks, thus, the network is trained on synthetic
data. Training on synthetic data offers much freedom in designing a training dataset,
therefore, it is important to understand the impact of the data distribution on the
inversion results. To define the best way to construct a synthetic training dataset, we
perform a study on four different approaches to populating the training set making
remarks on data sizes, network generality and the impact of physics-based constraints.
Using the results of a reservoir simulation model to populate our training datasets,
we demonstrate the benefits of restricting training samples to fluid flow consistent
combinations in the dynamic reservoir property domain.With this the network learns
the physical correlations present in the training set, incorporating this information
into the inference process, which allows it to make inferences on properties to which
the seismic data are most uncertain. Additionally, we demonstrate the importance
of applying regularization techniques such as adding noise to the synthetic data for
training and show a possibility of estimating uncertainties in the inversion results by
training multiple networks.
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INTRODUCTION

Estimating dynamic reservoir property change during a period
of field production from four-dimensional (4D) seismic data
has been a challenge and ambition for geoscientists in the oil
and gas industry. These estimates are appealing for reservoir
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monitoring and history matching purposes, because 4D seis-
mic data offer information about reservoir property changes
across the whole reservoir, at a specific production time. It
complements well production information, which is spatially
sparse but temporally dense. 4D seismic data provide infor-
mation for the space between wells. But this information is
encoded into the measured seismic amplitudes. So, we need to
comprehend how the changes occurring inside the reservoir
affect the seismic amplitudes we measure.
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Along field production, the reservoir goes through con-
stant change in properties such as fluid saturation, pore pres-
sure, temperature, or even to changes in the reservoir rock
architecture itself due to compaction and dissolution. The
change in each of these properties has an independent impact
on the seismic data, but they seldom act alone. Water injec-
tion for example leads to an increase in water saturation and
an increase in pressure in the vicinities of the injector well.
The observed 4D seismic amplitudes are a superposition of all
the effects caused by the simultaneous variations in any dy-
namic property. The challenge is in quantitatively estimating
the simultaneous contribution of each reservoir property to
the final observed data. As is common in geophysical inver-
sion, this is an underdetermined problem, prone to ambigui-
ties and highly uncertain. Seismic information is limited and
cannot provide enough independent measurements to charac-
terize the whole reservoir state.

The information present in the variation of 4D ampli-
tudes with offset (4D AVO) is crucial for quantifying multi-
ple simultaneous reservoir property changes.We can highlight
two major theoretical studies that use analytical solutions to
show the possibility of quantifying the changes in both pres-
sure and saturation directly from the 4DAVOdata. In the first,
Landrø (2001) follows a linearization of Smith and Gidlow’s
approximation to the reflection coefficient equation (Smith
and Gidlow, 1987) to analytically derive a linear relation link-
ing the 4D AVO gradient/intercept seismic attributes to the
changes in two reservoir properties, pressure andwater/oil sat-
uration. The derived equations depend on rock physics-related
parameters that can be estimated using laboratory measure-
ments. In a different approach, Alvarez and Macbeth (2014)
follow a linearization of the Aki and Richards’ (1980) ap-
proximation to the reflection coefficient equation to derive an
angle-dependent linear relation between the changes in pres-
sure and oil/water saturations and the 4D seismic amplitudes.
This relation also depends on reservoir petro-elastic param-
eters. Additionally, MacBeth et al. (2006) developed a data-
based inversion method that assumes a linear link between
any 4D seismic attribute and the changes in pressure and sat-
uration. The parameters in the equations here are not directly
related to any petro-elastic property, instead, they need to be
previously calibrated using repeated well measurements, in a
similar manner as the way neural networks are trained us-
ing direct observations. In this study, the authors run a prin-
cipal component analysis to determine the best 4D seismic at-
tributes for the simultaneous quantification of pressure and
saturation changes (Floricich, 2006). The authors conclude
that the 4D AVO related attributes contribute the most to the

inversion process and that the separation of effects could not
be done without this AVO information.

Other methods take advantage of the 4D AVO informa-
tion in many domains (impedance, gradient/intercept, seis-
mic amplitudes) to invert for the changes in different reser-
voir properties such as pressure, compaction, and the satu-
rations of water and gas (Trani et al., 2011; Coleou et al.,
2013; Corzo et al., 2013; Davolio et al., 2013; Omofoma,
2017; Wong, 2017; Côrte et al., 2019). Most of these stud-
ies stress that there is a good deal of ambiguity and uncer-
tainty in the solutions, thus any available external informa-
tion should be used to constrain and/or regularize the inver-
sion process (Blanchard and Thore, 2008; Blanchard, 2012).
External information may come from the wells, as inMacBeth
et al. (2006) and Coleou et al. (2013), where the authors use
well-injected and produced volumes as global constraints to
the saturation results. Reservoir simulation models can also
be used to provide information to guide the inversion results.
Davolio et al. (2013) and Omofoma (2017) use multiple real-
izations of a reservoir simulation model to define local hard
bounds, constraining the possible inversion results. Côrte et al.
(2019) use the results of a history matched simulation model
as local prior information in a Bayesian inversion approach
to regularize the solution and provide soft constraints to the
inversion results. Additionally, 4D seismic time-shift measure-
ments have also been used as a data-based source of informa-
tion in simultaneous inversion processes (Trani et al., 2011;
Thore and Hubans, 2012). In neural network solutions, we
do not have the possibility of applying direct constraints to the
inference process. Constraining the training dataset does not
guarantee constrained results either, as the network can ex-
trapolate beyond the training dataset. In this paper, we show
a few techniques that can be used in the construction of the
network architecture and training dataset that contribute to
regularizing and constraining the inversion results.

The construction of the training dataset is a critical step
that has great impact on the inversion results. Neural network
applications, as opposed to most of the mentioned studies, do
not rely on a physical model to establish the links between the
seismic and reservoir domains. Instead, they rely on a training
dataset composed of real input–output measurements, learn-
ing from it the non-linear relations that link inputs to outputs.
The training dataset defines the ‘physical’ model that is used
in the inversion, so it is important that it contains a good phys-
ical representation of the whole problem. In this case, a good
training dataset should represent the whole reservoir, contain-
ing the global variability on reservoir quality and the possible
dynamic property combinations.
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Measured data to compose a training dataset can only
come from repeated well measurements at seismic acquisition
times. MacBeth et al. (2006) use well data in a model cali-
bration approach analogous to neural network training. The
authors pre-define a linear equational link between the seismic
and reservoir domains and iteratively calibrate the equations’
parameters to fit the data measured at a few well locations.
The main difference to neural network training is that deep
neural networks (DNNs) contain thousands more parameters
to be calibrated, leading to much more complex non-linear
relations. Consequently, deep neural networks need a much
larger amount of data for satisfactory training. Nonetheless,
Cao and Roy (2017) perform a synthetic study showing that
a neural network can also be trained successfully using only
information at well locations in a 4D reservoir property in-
version application. In real reservoir cases though, the neces-
sary repeated saturation well logs are not common and may
be lacking as whole, as is true in our case study. This type of
data is sparse, and it can be argued that it may be biased to
good reservoir areas, where the wells are located, and thus, in-
capable of representing the entire reservoir. More often than
not, just the well data are not sufficient to properly train a
neural network.

The alternative is to use synthetic data to help in the con-
struction of the training dataset. Ayzenberg and Liu (2014)
present a real reservoir case of a neural network application to
4D pressure and saturation inversion where the authors pop-
ulate their training dataset with reservoir simulation results
and real seismic observations at a few well-understood areas.
To extend their training dataset beyond the wells, they begin
a shift to synthetic data, but only on the reservoir domain,
keeping the real observed seismic data. Xue et al. (2019) use a
fully synthetic dataset to train their neural network to quantify
the changes in water saturation on a real reservoir case. The
authors make use of a wedge model as a static frame and ran-
dom sampling of the dynamic domain. More recently, Zhong
et al. (2020) presented a solution using convolutional genera-
tive adversarial networks to invert impedance change images
to reservoir property changes. Their convolutional approach
analyses full images, incorporating a spatial correlation aspect
into the inference results. For this reason, their synthetic train-
ing dataset is composed of full reservoir images, created by
running 300 reservoir simulations with varying static models.
Although convolutional networks are the state-of-the-art in
image analysis, they require an immense amount of previous
work to prepare synthetic training datasets

This paper presents a DNN application to inverting 4D
AVO seismic data into the simultaneous changes in three reser-

voir properties: pressure (�P),water saturation (�Sw) and gas
saturation (�Sg). It provides a quick and practical alternative
to more well-established inversion methodologies. As a good
platform for comparison, we present a Bayesian model-based
inversion approach applied to the same dataset in Côrte et al.
(2019), and a direct comparison of methods in Dramschet al.
(2019a).

The DNN is trained with synthetic data and applied to
real 4D seismic data from a North Sea field. We use a reser-
voir simulator to seismic modelling approach (Sim2Seis) to
construct four synthetic training datasets with the objective of
assessing the impact of the distribution of data in the training
dataset on the quality of the inversion results when applied to
a real 4D seismic dataset. The training datasets presented dif-
fer essentially on how much external physical information is
used to constrain and distribute the data.We show the value of
using physics informed and fluid flow consistent realizations
to create a realistic distribution of data in a synthetic training
dataset. Furthermore, we show the importance of training the
DNN on noisy synthetic data and the possibility of estimating
uncertainties in the results by training multiple DNN models
with varying signal to noise levels. With this we address the
problems of constraining the results with external physical in-
formation and regularizing solutions to avoid overfitting of
the training data and inverting noise.

F IELD AND DATASET

The field is composed of stacked turbidite channel and sheet-
like sands ranging from 5 to 30 m in thickness and 25–30%
in porosity. It is highly compartmentalized both laterally and
vertically due to faults and intercalating shales. The sand-
stone reservoir is present in four adjacent fault blocks. Faults
between blocks are sealing, creating four isolated segments
with varying water oil contacts (Fig. 1b). This whole struc-
ture dips and thickens to the north-west (Fig. 1a). Inside each
segment there are faults that may be sealing or not, leading to
a few isolated compartments and a highly complex geological
setup. Figure 1(c) shows the vertical sum of pore volume in the
reservoir, where we see clearly the channel features. Detailed
explanations of the depositional and stratigraphic evolution
of the region can be found in Ebdon et al. (1995) and Lamers
and Carmichael (1999).

The initial pressure in the field was only around 3 MPa
above bubble point pressure, making pressure maintenance
to prevent gas exsolution the main production strategy. To
maintain pressure, water injectors were drilled in the water
leg, on the west flank of the reservoir and in other select zones

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 1 (a) Top reservoir horizon in time, (b) initial water saturation for reservoir sandstone, (c) pore volume for reservoir and (d) NRMS
measure of non-repeatability.

around the reservoir. Even so, production in this complex
compartmentalized structure led to areas with strong pres-
surization due to water injection into isolated compartments,
while other areas lack the pressure support and experience
gas release due to pressure depletion below bubble point
pressure. This creates a complex dynamic setup on top of an
already complex static framework. The challenge is to use
four-dimensional (4D) seismic data to quantitatively estimate
simultaneous changes in three dynamic properties: pressure
(�P), water saturation (�Sw) and gas saturation (�Sg)
across the reservoir. Both pressure and gas effects on seismic
data are non-linear, so the inversion method should deal
properly with the non-linearities due to changes in these two
properties.

The production strategy for this reservoir included regu-
lar 4D seismic acquisitions to aid in monitoring reservoir pro-
duction. In this paper, we present the results of the method ap-
plied to one of the manymonitor seismic acquisitions acquired
along the field life. The reservoir is thin to seismic standards,
being identified in a seismic quadrature section as one single

trough (Fig. 2). For this reason, all of the analysis is done in
map form. The seismic data used for inversion (Fig. 3) are the
time-lapse difference in the sum of negative amplitudes map
attribute (�SNA), extracted from quadrature seismic volumes
along the reservoir time window. This map extraction consists
of a vertical sum of the negative seismic amplitudes between
the top and bottom reservoir horizons (shown in Fig. 2) for
the baseline and monitor volumes, followed by a subtraction
of these two maps (monitor – baseline). Calculated time-shifts
are very small and show no correlation with the seismic am-
plitudes or production data, so unfortunately, they were not
useful. We use the pre-production seismic acquisition as the
baseline for generating the 4D seismic maps.

Figure 1(d) shows the normalized root mean squared
(NRMS) map extracted from the monitor-baseline pair used
for inversion. This was calculated in a 400 ms time win-
dow, 100 ms above the reservoir, so that it is away from any
production-related effects, but deep enough not to capture ac-
quisition footprints. NRMS is a measure of comparison be-
tween two seismic traces. When extracted in the overburden
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Figure 2 Sum of the negative amplitude (SNA) seismic map attribute for the baseline acquisition (left), extracted from the quadrature full stack
seismic 1996 baseline acquisition (right). Seismic section on the right shows the top and bottom reservoir horizons between which seismic
attributes are extracted.

region, NRMS maps are interpreted as a measure of non-
repeatability between two seismic acquisitions, providing a
relative estimation to the 4D seismic data quality across the
reservoir. NRMS values range from 0 to 2. Values of 0 repre-
sent perfectly correlated traces, 1 is observed for uncorrelated
random noise traces while 2 is observed for anti-correlated
traces. It is commonly presented as percentage values, with a
multiplication of the calculated NRMS values by 100. Calcu-
lated NRMS values range from 20% to 40%, except for the
undershoot zone, where repeatability is poor due to the pres-
ence of a production platform. The poor repeatability in this
area has a strong impact on the quality of the signal and, as
we will see, in the inversion results for this area.

To aid in interpretations, Fig. 4 shows vertical average
maps of the reservoir simulation results. In all maps in Fig-
ures 3 and 4, the colour scales are adjusted to represent soften-
ing effects as yellow–red and hardening effects in blue–green.
Softening effects are defined as those that are related to a

decrease in the bulk reservoir rock seismic impedance, while
hardening effects relate to increases in reservoir impedance.
For example, increase in water saturation lead to an increase in
reservoir impedance because water impedance is higher than
the oil impedance. Increases in gas saturation on the other
hand lead to decreases in the reservoir impedance because gas’
seismic impedance is lower that of the oil. For this reason, their
colour scales are inverted. This scheme simplifies the compar-
ison of reservoir property maps and seismic maps.

In Figs 3 and 4 some areas of interest are circled, show-
ing important features that we will use as guides for a qual-
itative assessment of the inversion results. This initial inter-
pretation is inherited from previous four-dimensional ampli-
tudes with offset (4DAVO) studies done for this dataset (Côrte
et al., 2019). Circled areas represent the reservoir property
that dominates each seismic anomaly. This depends on the
seismic sensitivity to changes in each property and on what
other property changes are occurring simultaneously. Seismic

Figure 3 Seismic data used for inversion: time-lapse change in the sum of negative amplitudes attributes extracted from the near, mid and far
stack.

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 4 Vertical average maps of the results of the reservoir flow simulation for the changes in pressure (�P), water saturation (�Sw) and gas
saturation (�Sg).

amplitudes may be more sensitive to changes in some property
over other. If changes in both these properties are superposed,
the seismic effects related to one property will overcome and
dominate over the other. Uncertainties tend to be larger in the
properties that have their effects dominated by co-occurring
changes in other properties to which the seismic data are more
sensitive.

Zones circled in magenta (A, B, C, D and E) are well-
understood softening signals related to pressurization around
water injectors. In this case, the hardening signals related to
the increase in water saturation are overcome and dominated
by the stronger softening signals related to the pressure in-
crease. Zones circled in green (F and G) are well-understood
softening signals related to gas saturation increase. In these
zones, the gas saturation softening response dominates, but it
is always in competition with hardening signals due to wa-
ter saturation increase. In zone F, the water comes mainly
from the aquifer located to the north and west, aided by in-
jectors in the water leg. This zone is particularly complicated
because, aside from the water-gas competition, it lies under
a platform in an area of low seismic repeatability (Fig. 1d),
thus the seismic data here are very noisy and uncertain. The
AVO gradient is especially affected, crippling the data capabil-
ity of differentiating between pressurization-related softening
effects and gas saturation related ones. For this reason, inver-
sion results in zone F may show leakage between gas and pres-
sure effects. In zone G, the water comes from the two injectors
placed on its southwest edges. We see from the simulation re-
sults (Fig. 4) that a considerable amount of water has been
injected in this zone, but no hardening signal can be seen in
Fig. 3. As seismic data are much more sensitive to increases
in gas than in water saturations, the gas-related response
dominates.

We see some hardening signals related to water saturation
increase in Fig. 3, but no evident hardening signal related to
pressure depletion. The non-linear nature of pressure effects
on 4D seismic data means that even though pressure increase
leads to strong softening signals, pressure depletion results in
very low hardening anomalies. To complicate further, in the
present case, pressure depletion is always accompanied by gas
coming out of solution, so the gas softening effects always
dominate over the weak hardening pressure depletion signals.
This makes it particularly difficult to quantify pressure deple-
tion values from the 4D seismic data.

The main challenges for this inversion are to quantify the
pressure increase values in the pressurized compartments, to
differentiate between pressure related and gas related soften-
ing signals, to determine areas of pressure depletion and to
locate water fronts in areas where water saturation related
hardening signals are dominated by other competing effects.

DEEP NEURAL NETWORK ARCHITECTURE
AND TRAINING

We employ a deep neural network (DNN) with the encoder–
decoder architecture to translate the mapped sum of negative
amplitudes (�SNA) seismic attributes (Fig. 3) into the cor-
responding changes in three reservoir properties: �P, �Sw
and �Sg. Although we mention maps, this network is not
working on full images, instead it makes pixel-wise inferences,
analysing each pixel individually and independently of oth-
ers. In the training phase, it uses all the pixels (or samples)
provided in the training dataset to define one general non-
linear function that best links the values given in the input do-
main to the output domain. In the inference phase, it applies
this non-linear function individually to each pixel in the map
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Figure 5 Deep neural network architecture.

provided. Being so, there is no lateral correlation constraint
or smoothing technique to ensure lateral correlation and con-
trol noise content. For this reason, we employ three impor-
tant techniques that help to avoid overfitting and inverting
noise: dropout regularization (Srivastava et al., 2014), varia-
tional Bayes encoding layer (Kingma and Welling, 2014) and
training with noisy samples (Bishop, 1995).

The full DNN architecture consists of four encoding lay-
ers that compress the input information from 1024 neurons
in the first layer to 256 neurons in the last, a central layer
where variational encoding is implemented and a mirror de-
coder structure that decompresses the information back into
1024 neurons (Fig. 5). Compressing the information serves as
forcing function for the network to learn the most meaning-
ful features in the data in regard to the optimization objec-
tive. In each of the encoder–decoder layers we use a dropout
regularization technique in the training phase, this randomly
excludes 20% of the neuron connections in each training it-
eration. Dropout regularization is commonly used as a tech-
nique to prevent overfitting of the training data, leading to a
more general model and helping in dealing with noisy datasets
(Srivastava et al., 2014).

The central encoding layer is arranged so that each neu-
ron defines two outputs which are used to define Gaussian
distributions (mean and standard deviation). In the follow-

ing layer, each neuron draws one random value from each
Gaussian distribution. Consequently, a neuron from the cen-
tral layer feeds slightly different values to each neuron in the
following layer, as opposed to feeding the same value to all
neurons as it is done in all other connections in the network.
Using variational encoding in the central layer, instead of a
fixed link from encoding to decoding, provides a flexibility
to the network, making it more general and robust to noise
(Kingma and Welling, 2014). To be able to train the network
with back propagation of the gradients, we use the ‘reparam-
eterization trick’ as in Kingma et al. (2015). To construct this
architecture, we used a Tree of Parzen scheme for estimation
of the hyperparameters (Bergstra et al., 2013). This is an opti-
mization scheme that uses a subset of the training data to find
the best hyperparameters for the problem at hand. Adjusted
hyperparameters were the number of layers and neurons per
layer.

The input layer contains the time-lapse difference in the
�SNA seismic attribute, extracted for the near, mid and far
angle-stacks. From these three 4D seismic attributes, the net-
work calculates the four-dimensional amplitudes with offset
gradient to be used as an input as well. In the training phase,
before calculating the gradient, we add white Gaussian noise
to the synthetic data. This step is crucial for achieving mean-
ingful results when making inferences on the noisy seismic

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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data. Training with noisy synthetics is equivalent to Tikhonov
regularization of inversion processes (Bishop, 1995), so it con-
trols overfitting and prevents the DNN from treating the noise
as signal. The magnitude of the added noise is controlled by
one single parameter, the signal to noise ratio, that defines the
standard deviation of the Gaussian distribution from which
random noise values are drawn. In a later section of this pa-
per, we present an analysis of the impact of this noise param-
eter on the inversion results and elaborate on how to assess
the performance of the trained models and select an optimal
value for this parameter.

In addition to the time-lapse seismic attributes,we also in-
clude in the inputs the reservoir pore volume, calculated from
the reservoir simulation model. This static parameter is rele-
vant as reservoir pore volume acts as a scalar on the 4D seismic
amplitudes, leading to stronger responses in areas with higher
reservoir pore volume. We observed that the addition of this
static parameter within the network architecture is essential in
achieving a more accurate regression result. The pore volume
as an input parameter abstracts the information the neural
network has to learn from the seismic input maps, alleviating
the learning process for the network (Dramsch et al., 2019b).

Supervised training of neural networks relies on an en-
semble of samples of known input-output pairs which define
the training dataset. We use the Adam optimization method
(Kingma and Ba, 2015) for training. It is a stochastic gradient
descent optimization approach with Nesterov momentum and
an adaptive learning rate. The algorithm iteratively updates
the neuron weights that define the network state, in each iter-
ation outputs are calculated from the inputs provided in the
training dataset. The algorithm then compares the calculated
outputs to the outputs in the training dataset, using a mean
squared error objective function. More details on the archi-
tecture and training strategies used can be seen on Dramsch
et al. (2019b).

The training data are presented to the network in the
form of N×1 vectors, with N being the number of samples
in the training dataset. Each of the parameters in the input
(�SNAnear,�SNAmid,�SNAfar and Pore Volume) and output
(�P, �Sw and �Sg) are presented as a separate N×1 vector.

CONSTRUCTION OF THE SYNTHETIC
TRAINING DATASETS

Defining the training dataset is one of the most important
steps in a neural network workflow. In the present application,
the network represents (or replaces) the physics that links the
seismic domain to the reservoir domain, but in fact it has no

knowledge or any information about the physics it represents.
It learns this implicitly from the training dataset, so the quality
of the training dataset will define how well the network will
mimic the physics of the problem and its capability of inferring
meaningful results from unseen data.

To construct the training dataset, we need to form an en-
semble of input–output realizations. These are independent
single pixel realizations of �P, �Sw, �Sg and Pore Volume
and their resulting sum of negative amplitudes values for near,
mid and far stacks. In the lack of a good and sufficient mea-
sured dataset, the alternative is to use synthetic data, generated
based on a physical model that represents as best as possible
the problem at hand.

In this application, we employ a reservoir simulator to
seismic modelling (Sim2Seis) technique (Amini, 2014) to cre-
ate synthetic seismic data from a reservoir flow simulation
model. We use one fixed reservoir model that has been pre-
viously history matched to production data. The model grid
spans the whole reservoir, so it contains a good representa-
tion of the variability of the static reservoir properties. We use
this static geological model as the frame for creating four dif-
ferent training datasets that differ in the distribution of the
sampled realizations in �P, �Sw, �Sg and Pore Volume. For
each realization, we extract a pseudo-log from a certain lo-
cation in the static reservoir model. The pore volume value is
calculated from this pseudo-log, as the vertical sum of the pore
volumes for active cells in the reservoir zone. Next, we define
a sample realization for the �P, �Sw and �Sg values. These
values are distributed vertically in all reservoir cells in the ex-
tracted pseudo-log, always respecting initial and residual sat-
uration values in each cell. As this is a map-based approach,
we do not model different vertical distributions of fluids or
pressure in the reservoir. With this approach, we maintain the
vertical resolution of the reservoir model on the static proper-
ties, but the dynamic properties represent a vertical average.
Angle-stacked seismic traces are then calculated for baseline
and monitor states using Sim2Seis and from them the sum of
negative amplitudes attributes are extracted along the reser-
voir time window.

The reservoir model cell dimensions are 50 × 50 m in
the lateral dimensions and 3 m vertically. The regular seismic
grid separation is 25 m in both inline and crossline directions.
For all synthetic seismic calculations, we use one fixed petro-
elastic model that was previously calibrated to the well logs
and the observed seismic data (Amini and MacBeth, 2015;
Amini, 2018). The petro-elastic model is based on a mixture
of sand and shale grains following volume fractions given by
reservoir net to gross.Rock frame elastic moduli are calculated

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Table 1 Training dataset sizes and training times

Training
Datasets

Number of
Pseudo-Logs

�P × �Sw ×
�Sg Realizations
per Pseudo-Log

Total Number of
Samples

Average Training
Time (minutes)

1 300 1130 339,000 ∼17
2 300 475 142,500 ∼7
3 12,944 7 30,608 ∼4
4 12,944 100 1,294,400 ∼60

following Nur´s critical porosity model (Nur et al., 1998).
Pressure dependence follows the compliance model by Mac-
Beth (2004), using for model parameters the values measured
for a sandstone reservoir in the west of Shetland islands, anal-
ogous to Shiehallion,which are provided in his paper. Effective
fluid elastic moduli are calculated using a homogeneous sat-
uration model and Gassmann´s fluid substitution equations
(Gassmann, 1951) bring all the pieces together to calculate
the saturated rock elastic moduli. Seismic traces are calculated
by a convolution of a source wavelet with the reflectivity se-
ries calculated with the petro-elastic model. We use separate
wavelets for each angle-stack,which are extracted individually
from the each of the observed angle-stacked seismic volumes.
Wavelets are all zero phase with central frequencies of 29 Hz
(near), 25 Hz (mid) and 20 Hz (far).

We tested four training datasets with the objective of as-
sessing the impact of data size and the use of physics informed
realizations to populate the training dataset. The amount of
physics information used to construct the training datasets
increases from set 1 to 2 and to 3. For Training dataset 4,
data augmentation techniques are used to assess the impact of
dataset size on the inversion results, while keeping the similar
levels of physics information as in Training dataset 3.

Table 1 shows a comparison of the amount of data, how
it is distributed and the resulting training runtimes for all four
training datasets presented. Figure 6 shows the global distri-
bution of data in each training dataset.

Regularly sampled realizations (Training datasets 1 and 2)

In neural network applications, it is often desirable to have
general trained networks that can be applied satisfactorily to
many different cases. In the current application, this would
mean training one general network that can be applied to
many reservoirs with differing static and dynamic situations.
The most general training dataset should contain realizations
representing all possible situations, both on the static (Pore
Volume) and on the dynamic (�P × �Sw × �Sg) domains.

Training dataset 1 is constructed in a way as to be the
most general. For this, we generate synthetic realizations for
every point in a regular four-dimensional sample grid (Pore
Volume × �P × �Sw × �Sg). The sample grid covers the
whole range of possible situations on all four properties. To
keep the saturation values realistic, we apply a unity con-
straint on the sum of the saturations, and always respect
residual oil and water saturations, so that as an example,
if �Sw = 0.5, then �Sg is constrained to values between 0
and 0.15. For each Pore Volume value defined in the sam-
ple grid, we extract one single pseudo-log from the simula-
tion model that best represents this Pore Volume value. We
then proceed to calculating time-lapse seismic traces for all
realizations in the dynamic domain. The reservoir simulation
model is used here only to define the static frame for calcu-
lating synthetic data, but the reservoir simulation results are
not used.

The same sampling strategy is used for Training datasets
1 and 2. The only difference between these datasets is one
simple constraint used in Training dataset 2. This constraint
comes from our external understanding of the physical pro-
cesses governing the problem at hand. As has been mentioned,
in this reservoir, the increase of gas saturation is a response to
pressure depletion. As pressure goes below bubble point pres-
sure, gas comes out of solution from the oil phase. Wherever
pressure increases from initial pressure, which is above bubble
point pressure, we expect no gas saturation change to occur.
Thus, training sample realizations containing simultaneous in-
creases in pressure and gas saturation are not representative of
the reality analysed and could be interfering negatively in the
solutions. For Training dataset 2, we delete all samples with
simultaneous increase in pressure and gas saturation, conse-
quently making it less general, more specific to the reservoir
situation. The comparison of Training datasets 1 and 2 pin-
points the impact of one simple constraint, showing the ben-
efits that can be achieved by adding one bit of physical infor-
mation to constrain the realizations in the synthetic training
dataset.

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 6 Histograms showing the global distribution of data in Training datasets 1, 2, 3 and 4.

Fluid flow consistent realizations (Training datasets 3 and 4)

A full 3D reservoir flow simulation offers �P × �Sw × �Sg
realizations that respect a full range of physical processes, in-
cluding the causal relationship between pressure depletion and
gas saturation increase, but also processes related to wetta-
bility, capillary forces, relative permeability, etc. Restricting
our training samples to the combinations offered by the re-
sults of a reservoir simulation model means that the training
dataset will respect all of these physical processes and thus
be even more realistic and similar to what an unbiased mea-
sured dataset would offer. The resulting training datasets are
even less general and more specific to the reservoir situation.
Reservoir simulation results are used in Training datasets 3
and 4.

For Training dataset 3, we use the reservoir simulation
results as the only �P × �Sw × �Sg combinations in the
training dataset. To maintain consistency with the previous
approaches we do not run simulator to seismic modelling di-
rectly on the reservoir simulation results, first we extract ver-
tical average maps for �P, �Sw and �Sg at a given time-step,

then we apply the same forward modelling process as previ-
ously described (distributing the averaged maps vertically in
the extracted pseudo-logs). We extracted simulation results
for eight time-steps corresponding to the seismic acquisition
dates. This choice on time-steps was done simply because it
is common to use a reservoir simulator to seismic modelling
workflow at seismic acquisition times to compare synthetic
with observed seismic data, so in this case we did not need to
extract additional simulation results, all the data were already
available and had been generated and used for other previous
purposes, this would usually also be true in a regular industry
setup. There is no real need to restrict the time-steps to seismic
acquisition dates though.

There is a great difference on the distribution of data us-
ing this approach (Fig. 6). In this case, we run synthetic traces
for every trace location in the simulation model, with this we
have 12,944 static pseudo-logs instead of the 300 of the pre-
vious models, on the other hand, we only have seven �P ×
�Sw × �Sg realizations per pseudo-log. Thus, pore volume
is much more finely sampled, and the global distribution of
pore volume is no longer uniform, here it resembles the global
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Table 2 Performances and training SNRs of the best models in the synthetic and well validations

Training Datasets Synthetic Validation Well Validation

Total NMSE �P �Sw NMSE �Sg Training SNR �P Training SNR
NMSE NMSE NMSE

1 3.08 2.68 2.19 4.37 21.5 6.60 39.5
2 1.56 0.71 1.66 2.31 42 2.50 19
3 0.66 0.62 0.70 0.64 17 0.46 14
4 0.56 0.50 0.73 0.45 11 0.40 12

distribution that could be found in reality. Regarding the dy-
namic domain sampling, though the simulation results cannot
be taken as the real reservoir fluid flow state, the global distri-
butions should resemble reality, as the model has been history
matched to well production and injection volumes and pres-
sure measurements. The resulting training dataset is smaller in
total number of samples but is much more representative of
the reality of the reservoir.

It remains true that DNNs benefit from larger amounts of
data. For this reason, in Training dataset 4 we make an effort
to augment the previous training dataset, while maintaining
all the physical relationships present in the reservoir simula-
tion results. We do this by grouping all the dynamic domain
samples (�P× �Sw × �Sg) in the previous training dataset to
create an ensemble of possible samples that respect the reser-
voir flow physics. For each static pseudo-log extracted from
the simulation model, we draw 100 random samples from this
global ensemble of dynamic realizations to run time-lapse syn-
thetic seismic traces. In practice, we take the reservoir simu-
lation results found at one trace location and apply it to a
different trace location, always respecting end member satu-
ration limits. This approach maintains global distributions in
pore volume, �P, �Sw and �Sg that are similar to Training
dataset 3 (Fig. 6), while augmenting the data size by 100 times.

MODEL PERFORMANCE QUANTIF ICATION

To assess the performance of each trained model, we use two
validation approaches. The first one is based on synthetic data,
where ground truth is exact, but the seismic data are more well
behaved and may not represent the real observed data prop-
erly. The second is applied to the observed data itself, using as
ground truth for validation the well measurements at seismic
acquisition times. In the second approach, the seismic data are
a good representation of the real data, but the ground truth
is not exact and carries itself some uncertainty. A summary
of the performance quantification results for all four training
datasets can be found in Table 2.

As has been mentioned, we add random noise to the syn-
thetic training samples in the training phase, to take advantage
of the regularization property this technique carries (Bishop,
1995). A deep neural network that is trained on noisy synthet-
ics is more generalized and capable of interpreting the noisy
character of the observed data and avoid overfitting this noise.
This capability varies with the amplitude of the noise added. If
we add too much noise, this corrupts the amplitudes with off-
set information in the training phase and inferences are com-
promised. To assess the impact of the training noise param-
eter on the inference performance, we train 100 models for
each training dataset, with varying training noise levels, rang-
ing from 0 to 50% in noise to signal ratio (SNR). Intuitively,
the best performance should be achieved by the model that is
trained using the same SNR levels as are present in the infer-
ence data. As the final objective is to apply the inversion to the
real observed 4D seismic, it is worth estimating the SNR level
present in this dataset. For this, we consider the noise power
as the root mean square (RMS) of the observed seismic ampli-
tudes in the northernmost segment, where no production has
occurred and no 4D seismic signal is expected, and the signal
power as the RMS across the whole reservoir. Observed 4D
seismic data noise level was estimated to be 14%.

Synthetic validation

In order to make a fair comparison between the performances
achieved with the four different training datasets, we created
an additional set of synthetic data, which is not used for
training in any of the models. We want the validation dataset
to represent the real data as well as possible, so that the
performances calculated can be interpreted as the capability
of a certain model to make correct inferences on the real
data. For this reason, the validation dataset is constructed by
extracting the reservoir simulation results for one separate
time step, which is not used in Training datasets 3 and 4.With
this the validation dataset contains 12,944 samples. Then,
we add random noise with 14% noise to signal ratio (SNR)
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Figure 7 NMSE results for the synthetic validation. (a) Total, (b) �P, (c) �Sw and (d) �Sg.

levels, so that the synthetic validation dataset contains noise
levels comparable to the observed 4D seismic. We apply the
inference step to the same noisy synthetic validation dataset
for all trained models and assess the performance by compar-
ing the inference results to the reservoir property values in the
validation dataset. Comparisons are made individually for
each reservoir property using the normalized mean squared
error (NMSE) metric, these are then individually normal-
ized using the standard deviation of each target reservoir
property and averaged to achieve a global performance
metric.

Figure 7 shows plots for the performances achieved as
a function of the training noise to signal ratio (SNR) for all
four training datasets. Plots (b)–(d) show the performances on
each property individually and plot (a) shows the global per-
formances for all the trained models. To provide a reference

we also show the performances achieved in the ideal noise-
less case (dashed lines), where the models are trained without
noise addition and applied to a noiseless version of the syn-
thetic validation dataset. Models that achieved the best total
performance for each training dataset are highlighted in Fig. 7
and their results are plotted in map form in Fig. 8.

We observe a global increase in performance (Fig. 7a)
with the addition of training noise for all training datasets.
Best performances do not achieve the performance values
for the ideal noiseless synthetic case (dashed lines) but are
all considerably better than when no training noise is added.
The addition of training noise is responsible for a decrease of
30–60% in the total normalized mean squared error (NMSE).
For Training datasets 1, 3 and 4, the total NMSE reaches
a region of lower values with training SNRs around the
noise level applied to the validation dataset (14%). Training
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Figure 8 Map results from the best models in the synthetic validation.

dataset 2, on the other hand, shows an increase in perfor-
mance with training SNRs up to 49%. Intriguingly, for this
training dataset, it has been beneficial to train the model with
noise levels three times higher than the noise content of the
data it was applied to.

In a comparison between the training datasets, we see a
global increase in the performances from Training dataset 1 to
2(a). This is mostly due to better estimations of the pressure
(b) and the gas saturation (d). Performances for the water sat-
uration estimation are similar for Training datasets 1 and 2.
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This shows us that the use of a simple physics-based constraint
on the pressure and gas saturation has a positive impact on the
estimations of these two properties, while it has little impact
on the water saturation estimations. Training datasets 3 and 4
show considerably better performances than the two previous
ones, showing howmuch of a benefit can be achieved by using
training datasets populated with fluid flow consistent samples.
Training dataset 4 achieves slightly better total performances
(a) than Training dataset 3, indicating that the data augmen-
tation has been beneficial to the quality of inferences. Again
this is due to a difference in performances for estimating pres-
sure and gas saturation, as water saturation performances are
similar. For these two training datasets, the addition of noise
has no impact on the performance of the gas saturation esti-
mations.

Well data validation

Although we have made an effort to create a validation
dataset that mimics the real data, the performances achieved
when applying a model to synthetic data may not represent
the truth when the model is applied to the observed four-
dimensional seismic data. As has been mentioned, labelled
data for the real case are only present as measurements made
at wells during seismic acquisition times. For Schiehallion, we
only have bottom hole pressure measurements, which is the
main reason why we need synthetic data for training in the
first place. There is no real data to assess the inference re-
sults on the saturation values, but we can nonetheless assess
the pressure estimations only. The synthetic validation indi-
cates that total performances are mostly driven by the per-
formance on estimating pressures. This provides some confi-
dence in evaluating the models using well bottom hole pres-
sure measurements only, as the performance on the pressure
estimates may be a reasonable representation of the global
performances.

When comparing well bottom hole pressures to seismic
inverted pressures, it is important to keep in mind that the
pressure data measured at wells are not exact ground truth, it
carries uncertainties due to mainly two reasons:
-Spatial: In deviated wells, there is uncertainty in locating
where along the well perforations the bottom hole pressure
measurements should be related to. This is not an uncer-
tainty intrinsic to the well measurements, it becomes rele-
vant only when comparing inverted pressures along the well
perforations to the measured values.

-Temporal: A seismic acquisition may take weeks or even
months to be finished. Along this time, reservoir pressures

are not constant and bottom hole pressure measurements
may vary substantially. There is uncertainty in selecting the
ideal time to extract bottom hole pressure measurements for
the validation (Omofoma et al., 2019).

Figure 9 shows the normalized root mean squared
(NMSE) values achieved by all the trained models. In gen-
eral, the results corroborate the analysis made in the synthetic
validation study. All training datasets present an increase in
performance with the addition of training noise and a region
of higher performances around 14%, the estimated signal to
noise ratio (SNR) for the data they are applied to. In addi-
tion to these, Training datasets 1 and 2 show also other mod-
els with comparably good performances with higher training
SNR values. Training dataset 4 performs only slightly better
than Training dataset 3, considering the orders of magnitude
higher than computational cost.

Although each trained model offers a deterministic solu-
tion, training multiple models with varying SNR values offers
the possibility of entering a statistical mind-set. As we have
multiple models that present comparable performances, we
can create a more general solution by averaging the results of
a few best performance models. Additionally, we can use the
standard deviation of these solutions as an estimative to the
uncertainties in each estimation. Inversion results presented in
the next section are all averages of the 10 best solutions, as-
sessed using this well NMSE, out of the 100 trained models.
The models used for average and standard deviation quantifi-
cations are marked in Figure 9.

INVERS ION RESULTS

To provide a visual representation of the benefits of training
our deep neural network (DNN) with noise, in Figure 10 we
present the inversion results when the DNNs are trained with-
out noise (Training SNR = 0). Figure 11 shows the final in-
version results, corresponding to the average between the solu-
tions of the 10 best models selected in the well data validation
study. Zero training signal to noise ratio (SNR) results are ex-
tremely noisy for Training datasets 1 and 2. The noise content
is lower for Training datasets 3 and 4, results for water and
gas saturations are similar to the final inversion results but
noisier. It is the pressure results that improve most by adding
training noise.

In this section, we interpret the final inversion results
(Fig. 11) for each training dataset individually. Interpretations
are mostly qualitative, using the circled zones as references.
Zones circled in magenta are pressure increase areas and zones
circled in green are gas accumulation areas.
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Figure 9 NMSE results for the well data validation.

Training dataset 1

The inversion results for this approach are quite noisy, espe-
cially in the gas and the water saturations. This model is in-
capable of defining well the areas that are impacted by gas
saturation, showing very high increases in gas saturation all
across the reservoir. Areas dominated by water saturation-
related hardening signals are marked reasonably well, but we
see a biased background resulting in increases in water sat-
uration across the whole reservoir as well. Furthermore, wa-
ter saturation values are above the physical limits in many ar-
eas, all water saturation values shown in dark green (limit of
the colour scale) are above the 85% physical limit. The max-
imum values for water saturation are of around 1.7, which
would mean an increase of 170% of the total porosity in wa-
ter saturation. Although we can apply constraints to the train-
ing data, this does not guarantee that the results will also be
constrained, deep neural networks are capable of extrapolat-
ing the training data and there is no other way to apply con-
straints to the inference results. This may lead to unrealistic
solutions if the training dataset is inappropriate.

In the pressure results we see well marked pressure in-
crease in all the zones circled in magenta, which is what is
expected, but quantitatively the values are far from what is
measured at the wells. These areas are where the pressure ef-
fects dominate the seismic signal; everywhere else the pressure
results are noisy and present an apparent bias towards pres-
sure increase. We also see some leakage from gas saturation-
related softening signals into pressure results in zone F. As has
been mentioned, in this case, the seismic data are nearly insen-
sitive to pressure depletion. Furthermore, pressure depletion is
accompanied by gas breakout, and the seismic data are very
sensitive to gas saturation increases. When these two effects
are superposed, the much stronger gas effects dominate so that

pressure depletion effects are comparable to noise. The seismic
data do not offer any considerable information on pressure de-
pletion (Côrte et al., 2019), so it is comprehensible that we see
no pressure depletion in the pressure estimations, aside from
noise.

Training dataset 2

The use of the constraint in the training dataset has a positive
impact on the estimations of changes in pressure and gas satu-
ration (Fig. 11). Pressure results are less biased and leakage in
zone F is better controlled. Gas saturation results now mark
reasonably well the areas of gas saturation dominance (zones
G and F), but we still see a biased background showing gas
saturation increases of around 7% across the whole reservoir.
Water saturation results are nearly not affected by the con-
straint, estimations remain biased and values are above the
physical limits in many areas.

Interestingly, we now see pressure depletion values in cor-
relation with gas saturation increase in zone G. It is unlikely
that these results are based on information from the seismic
data so it could be regarded as noise, but as we will see clearly
in the results of Training dataset 3 and 4, this is an indication
that the network is learning an additional level of information
from the training dataset.

Training dataset 3

We can see that having a better representation of reality in the
training dataset samples pays off in the quality of the results
(Fig. 11). For Training dataset 3 we have much clearer results,
noise is contained for all three dynamic properties and we no
longer see the general bias present in the water and gas satu-
ration estimations for the previous models, instead, we have
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Figure 10 DNN inversion results using training SNR = 0, for training datasets 1, 2, 3 and 4.

a general background of zero values in the areas where there
is no seismic evidence of change in each dynamic property.
This leads to more contained water estimations forming well-
defined bodies that can be connected to the injection wells.
Quantitatively, water and gas saturation values are more real-
istic, falling below the physically possible threshold, except for
the water anomalies in the undershoot zone, where the seismic

data are corrupted by low repeatability issues (Fig. 1d). Water
front estimations are compromised in some areas where water
effects on seismic are dominated by pressure (zones C and E)
or gas saturation (zones F and G) effects. On the southwest
edge of zone G, there are two injectors that inject a consider-
able amount of water (as can be seen in the reservoir simula-
tion results in Fig. 4), but we have no seismic evidence of where
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Figure 11 Final DNN inversion results for training datasets 1, 2, 3 and 4. Maps represent the average between the 10 best solutions. Zones
circled in magenta are pressure increase areas and zones circled in green are gas accumulation areas.

this water has gone in the inversion results, because the water
effects are completely obscured by the gas accumulation here.
In zone E, pressure increase effects dominate the seismic re-
sponse, here the water saturation results are also inconsistent
with the amount of water that has been injected into this zone.

Pressure increase is seen in all areas where it dominates
the seismic response (magenta circles), furthermore, the quan-
titative values are more in line with the pressures measured at
the wells. Outside these zones we have a global trend of zero
values and, interestingly, we see pressure depletion values in
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correlation with gas saturation increase (zones F and G). It
is clear that this information is not coming from the seismic
data. If any seismic information related to pressure depletion
could be detected, it would be away from those gas accumula-
tion zones, where the pressure effect is not so overwhelmingly
dominated. Instead, the inversion results show pressure deple-
tion values only in direct correlation with the gas saturation
increase. This pressure depletion – gas saturation increase cor-
relation is present in the training dataset, as gas exsolutions is
one of the physical processes modelled by the reservoir sim-
ulation. This is a clear indication that the deep neural net-
work (DNN) is learning the correlations present in the train-
ing dataset and using this information to make inferences on
the dominated properties, where the seismic data cannot pro-
vide useful information. We also see a curious gas saturation
decrease accompanying the pressure increase in zone B. As
there is no initial gas in the reservoir, gas saturation decrease
is not present in the training datasets. It does represent a pos-
sible reality between monitors, but as we use a pre-production
baseline, negative changes in gas saturations are not realistic.
We see this result as an indication that the DNN is not only
learning the correlation between pressure depletion and gas
saturation increase, but also extrapolating this correlation to
result in gas saturation decrease in pressure increase zones.
This extrapolation is undesirable, as it leads to non-physical
results, but it cannot be prevented.

Knowing that the DNN learns not only relations that link
input to output but also the correlations between variables
in the training dataset emphasizes the argument that the dy-
namic domain sampling used for creating the training dataset
should be retained to physically realistic combinations, be-
cause the DNN will embed this physical knowledge into the
non-linear transformations it learns. It is also important to
note that the data size of this training dataset is much smaller
than in the previous models, which means training runtimes
are also much faster (Table 1). In this case, it is not necessarily
the size of the dataset that matters most, instead the ability of
this dataset to represent specifically the global reality of the
problem is more important.

Training dataset 4

Augmenting the data size in this approach affected the results
only slightly (Fig. 11), but nonetheless the results are gener-
ally more consistent. In the pressure results, we see less noise
and leakage in the areas dominated by gas (zones F and G).
Water saturation results are now below the physical limit ev-
erywhere in the map, though the shape of all the water bodies

is very similar to the previous case and the definition of water-
fronts does not improve in areas of overwhelming dominance
by other properties (zones B, C, D, F and G). Gas saturation
results are similar but generally smaller than with Training
dataset 3 and zone B no longer shows unrealistic gas satura-
tion decrease values. Given the uncertainty in the estimations,
the uncertainty in the reservoir simulation results in this prop-
erty and the lack of measured saturation logs, it is impossible
to define which gas saturation solution is more precise.

Globally the results using Training dataset 4 are slightly
better than in model 3, but this comes at a high computa-
tional cost. In Table 1, we see that Training dataset 3 con-
tains the smallest data size and quickest runtimes and nonethe-
less it performs much better than Training datasets 1 and 2,
and nearly as well as Training dataset 4, which takes 15 times
longer to train. It is also relevant to consider the time it takes
to compute the synthetic seismic data to build these training
datasets, which is around 100 times longer in Training dataset
4 than in 3.

From this analysis, we see the critical importance in con-
straining the realizations of our synthetic training dataset to
realistic physics informed and fluid flow consistent combina-
tions that represent the specific problem at hand. This con-
straining will make the model less general, so it should not be
applied to a different case that may not contain the same con-
straint assumptions (e.g. gas injection, gas caps and reservoir
compaction), instead it will be more specialized to provide the
best results to one specific case.

UNCERTAINTIES

The presented deep neural network workflow is essentially
a deterministic solution, but as discussed, we could produce
multiple slightly different but equally viable solutions vary-
ing the signal to noise ratio (SNR) parameter for training. We
can use these multiple solutions to create a simple estimation
to uncertainties in the results. Uncertainties here represent the
instability in the solutions with varying SNR values. Figure 12
shows maps of the standard deviations of the selected 10 best
solutions for all four training datasets.

For Training dataset 1, uncertainty results offer little use-
ful information. From Training dataset 1 to 4 gradually the
uncertainties decrease globally, but some patches stand out
with high uncertainty values. For the water saturation, un-
certainties tend to be higher in the pressure increase zones,
and around the high normalized root mean squared (NRMS)
zone, which is represented well in the uncertainty results. On
the other hand, uncertainty results do not represent well the
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Figure 12 Uncertainty estimations for the four training datasets.

uncertainties expected in areas where water saturation effects
are dominated by gas saturation effects (Zones D and E). Un-
certainty results for pressure seem to show a direct correla-
tion with the pressure values themselves. This is the opposite
of what is expected, as seismic data become more sensitive to
pressure as pressure increases. It is unclear what value can be
brought from these types of uncertainty estimations, as they
do not represent seismic or modelling uncertainties. One thing

does stand out though. Uncertainty values for all three prop-
erties highlight zone B as a high uncertainty area.

Zone B is an isolated compartment that was pressurized
due to water injection. The injector well was online for around
three years andmeasured pressure increases as high as 20MPa
in 2004, when the seismic acquisition was shot. A previous
feasibility study in the area indicated that in order to reach
the observed seismic amplitudes, the pressures would need to
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be above the estimated rock fracture limit. There are many as-
sumptions in the current petro-elastic model that make it unfit
for representing the elastic behaviour of a fractured rock. If the
rock has indeed been fractured due to high injection pressures,
this means the petro-elastic model used in the creation of the
training dataset cannot represent well the rock physics of this
zone. Thus, in zone B we have an example of the use of an in-
adequate training dataset, constructed with an improper rock
physics model. This results in solutions that are more unsta-
ble with small changes in the noise parameter, which reflects
as high uncertainty values. So the uncertainty estimations here
were useful for identifying a zone where the synthetic training
data are unfit and thus inversion results are not trustworthy.

CONCLUSIONS

The present study has shown that deep neural networks
(DNNs) trained exclusively using synthetic data can provide
good solutions to the problem of inverting time-lapse seismic
data to the simultaneous changes in pressure, water satura-
tion and gas saturation. We show clear evidence of the bene-
fit of adding noise to the synthetic data in the training phase
to achieve less noisy and more accurate estimations. Train-
ing multiple models with varying training signal to noise ra-
tio (SNR) values and assessing model performance using well
measured data offers a possibility of selecting multiple equally
probable solutions to create a more general average result.
This may also lead to an estimation of the related uncertain-
ties, by calculating the standard deviation of the solutions pro-
vided by the selectedmodels.Uncertainty estimations here rep-
resent instability in the solutions with respect to the noise pa-
rameter and may indicate areas where the training dataset is
inadequate.

We show the critical importance of using physics in-
formed sampling of the dynamic domain in creating the train-
ing dataset, illustrated by the gradual increase in inversion
quality from Training datasets 1 to 3. From datasets 1 to 2, we
see that adding a simple external physical knowledge to con-
strain the samples has a positive impact on the solutions.Using
the results of a three-dimensional reservoir flow simulation as
the only samples in the dynamic domain (Training datasets 3
and 4) guarantees that the training dataset respects all phys-
ical processes modelled by the reservoir simulation. Training
datasets then contain physical boundary constraints, physical
correlations between dynamic domain parameters and global
distributions that resemble the reality of the reservoir. This re-
moves bias in the results and prevents the model from extrap-
olating beyond the training dataset and leading to extreme un-

realistic results. Solutions also become more stable, less noisy
and more precise.

Additionally, we observe that when trained using fluid
flow consistent data, the DNN learns not only the relations
that link input to output, but also the correlations present in
the training dataset, making use of those correlations to make
inferences on dominated properties, where the seismic data
lack information. This is observed in this case in the correla-
tions between pressure depletion and gas saturation increase.
Learning these correlations allows the DNN to resolve some
ambiguity present in the seismic data, resulting in better solu-
tions both in the pressure and in the gas saturation results.

We show that, in the present application, an ideal training
dataset is one that resembles the most what an unbiased mea-
sured dataset would be, both in the sense of containing all the
physical correlations in the dynamic domain and also main-
taining a realistic global distribution on all related properties.
This makes the DNN model less generalized, more specific to
the problem at hand, so it should not be applied to describe
situations that do not respect the constraints used in the train-
ing dataset.

Augmenting the data size while maintaining physical con-
straints achieved slightly better solutions, improving noise
content and leakage in the results. This comes at a high com-
putational cost though. In this application, it seems more im-
portant to constrain the sample realizations to physically in-
formed and fluid flow consistent combinations than to chase
large data sizes.
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