104 research outputs found

    Some Recent Advances in Bound-State Quantum Electrodynamics

    Full text link
    We discuss recent progress in various problems related to bound-state quantum electrodynamics: the bound-electron g factor, two-loop self-energy corrections and the laser-dressed Lamb shift. The progress relies on various advances in the bound-state formalism, including ideas inspired by effective field theories such as Nonrelativistic Quantum Electrodynamics. Radiative corrections in dynamical processes represent a promising field for further investigations.Comment: 12 pages, nrc1 LaTeX styl

    Evaluation of the low-lying energy levels of two- and three-electron configurations for multi-charged ions

    Get PDF
    Accurate QED evaluations of the one- and two-photon interelectron interaction for low lying two- and three-electron configurations for ions with nuclear charge numbers 60Z9360\le Z \le 93 are performed. The three-photon interaction is also partly taken into account. The Coulomb gauge is employed. The results are compared with available experimental data and with different calculations. A detailed investigation of the behaviour of the energy levels of the configurations 1s1/22s1/21S01s_{1/2}2s_{1/2} {}^1 S_0, 1s1/22p1/23P01s_{1/2}2p_{1/2} {}^3 P_0 near the crossing points Z=64 and Z=92 is carried out. The crossing points are important for the future experimental search for parity nonconserving (PNC) effects in highly charged ions

    Two-electron self-energy contribution to the ground state energy of heliumlike ions

    Full text link
    The two-electron self-energy contribution to the ground state energy of heliumlike ions is calculated both for a point nucleus and an extended nucleus in a wide interval of Z. All the two-electron contributions are compiled to obtain most accurate values for the two-electron part of the ground state energy of heliumlike ions in the range Z=20-100. The theoretical value of the ground state energy of heliumlike uranium, based on currently available theory, is evaluated to be -261382.9(8) eV, without higher order one-electron QED corrections.Comment: 12 pages, 1 figure, LATE

    Independent Eigenstates of Angular Momentum in a Quantum N-body System

    Get PDF
    The global rotational degrees of freedom in the Schr\"{o}dinger equation for an NN-body system are completely separated from the internal ones. After removing the motion of center of mass, we find a complete set of (2+1)(2\ell+1) independent base functions with the angular momentum \ell. These are homogeneous polynomials in the components of the coordinate vectors and the solutions of the Laplace equation, where the Euler angles do not appear explicitly. Any function with given angular momentum and given parity in the system can be expanded with respect to the base functions, where the coefficients are the functions of the internal variables. With the right choice of the base functions and the internal variables, we explicitly establish the equations for those functions. Only (3N-6) internal variables are involved both in the functions and in the equations. The permutation symmetry of the wave functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys. Rev. A 64, 0421xx (Oct. 2001

    Gravitation and inertia; a rearrangement of vacuum in gravity

    Full text link
    We address the gravitation and inertia in the framework of 'general gauge principle', which accounts for 'gravitation gauge group' generated by hidden local internal symmetry implemented on the flat space. We connect this group to nonlinear realization of the Lie group of 'distortion' of local internal properties of six-dimensional flat space, which is assumed as a toy model underlying four-dimensional Minkowski space. The agreement between proposed gravitational theory and available observational verifications is satisfactory. We construct relativistic field theory of inertia and derive the relativistic law of inertia. This theory furnishes justification for introduction of the Principle of Equivalence. We address the rearrangement of vacuum state in gravity resulting from these ideas.Comment: 17 pages, no figures, revtex4, Accepted for publication in Astrophys. Space Sc

    QED Effects in Heavy Few-Electron Ions

    Full text link
    Accurate calculations of the binding energies, the hyperfine splitting, the bound-electron g-factor, and the parity nonconservation effects in heavy few-electron ions are considered. The calculations include the relativistic, quantum electrodynamic (QED), electron-correlation, and nuclear effects. The theoretical results are compared with available experimental data. A special attention is focused on tests of QED in a strong Coulomb field.Comment: 28 pages, 6 tables, 5 figure

    Experimental progress in positronium laser physics

    Get PDF

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore