11,840 research outputs found

    A Statistical Model of Magnetic Islands in a Large Current Layer

    Full text link
    We develop a statistical model describing the dynamics of magnetic islands in very large current layers that develop in space plasma. Two parameters characterize the island distribution: the flux contained in the island and the area it encloses. We derive an integro-differential evolution equation for this distribution function, based on rules that govern the small-scale generation of secondary islands, the rates of island growth, and island merging. Our numerical solutions of this equation produce island distributions relevant to the magnetosphere and corona. We also derive and analytically solve a differential equation for large islands that explicitly shows the role merging plays in island growth.Comment: 4 pages, 3 figure

    Three-dimensional simulations of the orientation and structure of reconnection X-lines

    Get PDF
    This work employs Hall magnetohydrodynamic (MHD) simulations to study the X-lines formed during the reconnection of magnetic fields with differing strengths and orientations embedded in plasmas of differing densities. Although random initial perturbations trigger the growth of X-lines with many orientations, at late time a few robust X-lines sharing an orientation reasonably consistent with the direction that maximizes the outflow speed, as predicted by Swisdak and Drake [Geophys. Res. Lett., 34, L11106, (2007)], dominate the system. The existence of reconnection in the geometry examined here contradicts the suggestion of Sonnerup [J. Geophys. Res., 79, 1546 (1974)] that reconnection occurs in a plane normal to the equilibrium current. At late time the growth of the X-lines stagnates, leaving them shorter than the simulation domain.Comment: Accepted by Physics of Plasma

    Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

    Get PDF
    High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift in the X-ray emission from TW Hya with two different methods, by measuring the position of a selected sample of emission lines, and by fitting the whole TW Hya X-ray spectrum, allowing the line-of-sight velocity to vary. We found that the plasma at T~2-4 MK has a line-of-sight velocity of 38.3+/-5.1 km/s with respect to the stellar photosphere. This result definitively confirms that this X-ray-emitting material originates in the post-shock region, at the base of the accretion stream, and not in coronal structures. The comparison of the observed velocity along the line of sight, 38.3+/-5.1 km/s, with the inferred intrinsic velocity of the post shock of TW Hya, v_post~110-120 km/s, indicates that the footpoints of the accretion streams on TW Hya are located at low latitudes on the stellar surface. Our results indicate that complex magnetic field geometries, such as that of TW Hya, permit low-latitude accretion spots. Moreover, since on TW Hya the redshift of the soft X-ray emission is very similar to that of the narrow component of the CIV resonance doublet at 1550 Ang, as found by Ardila et al. (2013), then the plasma at 2-4 MK and that at 0.1 MK likely originate in the same post-shock regions.Comment: Accepted for publication in Astronomy & Astrophysics; 2nd version after language editor corrections; 16 pages, 8 figures, 6 table

    A survey of interstellar HI from L alpha absorption measurements 2

    Get PDF
    The Copernicus satellite surveyed the spectral region near L alpha to obtain column densities of interstellar HI toward 100 stars. The distance to 10 stars exceeds 2 kpc and 34 stars lie beyond 1 kpc. Stars with color excess E(B-V) up to 0.5 mag are observed. The value of the mean ratio of total neutral hydrogen to color excess was found to equal 5.8 x 10 to the 21st power atoms per (sq cm x mag). For stars with accurate E(B-V), the deviations from this mean are generally less than a factor of 1.5. A notable exception is the dark cloud star, rho Oph. A reduction in visual reddening efficiency for the grains that are larger than normal in the rho Oph dark cloud probably explains this result. The conversion of atomic hydrogen into molecular form in dense clouds was observed in the gas to E(B-V) correlation plots. The best estimate for the mean total gas density for clouds and the intercloud medium, as a whole, in the solar neighborhood and in the plane of the galaxy is 1.15 atoms per cu. cm; those for the atomic gas and molecular gas alone are 0.86 atoms per cu cm and 0.143 molecules per cu cm respectively. For the intercloud medium, where molecular hydrogen is a negligible fraction of the total gas, atomic gas density was found to equal 0.16 atoms per cu cm with a Gaussian scale height perpendicular to the plane of about 350 pc, as derived from high latitude stars

    The effects of strong temperature anisotropy on the kinetic structure of collisionless slow shocks and reconnection exhausts. Part II: Theory

    Full text link
    Simulations of collisionless oblique propagating slow shocks have revealed the existence of a transition associated with a critical temperature anisotropy epsilon=1-mu_0(P_parallel-P_perpendicular)/ B^2 = 0.25 (Liu, Drake and Swisdak (2011)). An explanation for this phenomenon is proposed here based on anisotropic fluid theory, in particular the Anisotropic Derivative Nonlinear-Schrodinger-Burgers equation, with an intuitive model of the energy closure for the downstream counter-streaming ions. The anisotropy value of 0.25 is significant because it is closely related to the degeneracy point of the slow and intermediate modes, and corresponds to the lower bound of the coplanar to non-coplanar transition that occurs inside a compound slow shock (SS)/rotational discontinuity (RD) wave. This work implies that it is a pair of compound SS/RD waves that bound the outflows in magnetic reconnection, instead of a pair of switch-off slow shocks as in Petschek's model. This fact might explain the rareness of in-situ observations of Petschek-reconnection-associated switch-off slow shocks.Comment: 18 pages, 10 figure

    Empires and Percolation: Stochastic Merging of Adjacent Regions

    Full text link
    We introduce a stochastic model in which adjacent planar regions A,BA, B merge stochastically at some rate λ(A,B)\lambda(A,B), and observe analogies with the well-studied topics of mean-field coagulation and of bond percolation. Do infinite regions appear in finite time? We give a simple condition on λ\lambda for this {\em hegemony} property to hold, and another simple condition for it to not hold, but there is a large gap between these conditions, which includes the case λ(A,B)1\lambda(A,B) \equiv 1. For this case, a non-rigorous analytic argument and simulations suggest hegemony.Comment: 13 page
    corecore