165 research outputs found

    Angiotensin II type 1 receptor antibodies in childhood kidney transplantation

    Get PDF
    Angiotensin II type 1 receptor antibodies (AT1 RAb) have emerged as non-HLA Ab present in patients with acute AMR and risk of graft loss. Furthermore, AT1 RAb have been shown to increase angiotensin II sensitivity which may play a role in the development of CVD and hypertension. Data on AT1 RAb in stable transplant recipients are lacking. The aim of this study was to analyze the levels of AT1 RAb in a cohort of stable patients after kidney transplantation (tx) in childhood. A cross-sectional study of 30 children (median age 14, range 3-19 yr, median time since tx five yr) and 28 adults who were transplanted in childhood (median age 26, range 20-40 yr, median time since tx 18 yr) transplanted between 1993-2006 and 1983-2002, respectively, was performed. Healthy controls were 51 healthy children (5-8 yr) and 199 healthy donors (median age 56.5 yr, range 42-83 yr). Plasma AT1 RAb were analyzed by immunoassay. Median total AT1 RAb IgG concentration was significantly higher in the pediatric-tx group as compared to the adult-tx group (40.0 and 10.95 U/mL, p < 0.0001). For both groups, the tx group showed higher levels: the pediatric-tx group vs. control group (40.0 vs. 13.3 U/mL, p = 0.0006) and the adult-tx group vs. adult control group (10.95 vs. 6.5 U/mL, p < 0.0001). Age was the strongest indicator of high levels of AT1 RAb IgG (p = 0.0003). AT1 RAb total IgG levels are significantly higher in a stable pediatric-tx cohort as compared to adult-tx patients and healthy controls of comparable age groups. The relevance of our findings in relation to age, time since tx, previous or future rejection, and CVD risk merits future studies

    The association between salt taste perception, mediterranean diet and metabolic syndrome: a cross-sectional study

    Get PDF
    Metabolic syndrome (MetS) is a widespread disorder and an important public health challenge. The purpose of this study was to identify the association between salt taste perception, Mediterranean diet and MetS. This cross-sectional study included 2798 subjects from the general population of Dalmatia, Croatia. MetS was determined using the Joint Interim Statement definition, and Mediterranean diet compliance was estimated using Mediterranean Diet Serving Score. Salt taste perception was assessed by threshold and suprathreshold testing (intensity and hedonic perception). Logistic regression was used in the analysis, adjusting for important confounding factors. As many as 44% of subjects had MetS, with elevated waist circumference as the most common component (77%). Higher salt taste sensitivity (lower threshold) was associated with several positive outcomes: lower odds of MetS (OR = 0.69; 95% CI 0.52-0.92), lower odds for elevated waist circumference (0.47; 0.27-0.82), elevated fasting glucose or diabetes (0.65; 0.45-0.94), and reduced HDL cholesterol (0.59; 0.42-0.84), compared to the higher threshold group. Subjects with lower salt taste threshold were more likely to consume more fruit, and less likely to adhere to olive oil and white meat guidelines, but without a difference in the overall Mediterranean diet compliance. Salt taste intensity perception was not associated with any of the investigated outcomes, while salty solution liking was associated with MetS (OR = 1.85, CI 95% 1.02-3.35). This study identified an association between salt taste perception and MetS and gave a new insight into taste perception, nutrition, and possible health outcomes

    The XIIIth Banff Conference on Allograft Pathology: The Banff 2015 Heart Meeting Report: Improving Antibody-Mediated Rejection Diagnostics: Strengths, Unmet Needs, and Future Directions.

    Get PDF
    The 13th Banff Conference on Allograft Pathology was held in Vancouver, British Columbia, Canada from October 5 to 10, 2015. The cardiac session was devoted to current diagnostic issues in heart transplantation with a focus on antibody-mediated rejection (AMR) and small vessel arteriopathy. Specific topics included the strengths and limitations of the current rejection grading system, the central role of microvascular injury in AMR and approaches to semiquantitative assessment of histopathologic and immunophenotypic indicators, the role of AMR in the development of cardiac allograft vasculopathy, the important role of serologic antibody detection in the management of transplant recipients, and the potential application of new molecular approaches to the elucidation of the pathophysiology of AMR and potential for improving the current diagnostic system. Herein we summarize the key points from the presentations, the comprehensive, open and wide-ranging multidisciplinary discussion that was generated, and considerations for future endeavors

    High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury

    Get PDF
    Ischemia/reperfusion (I/R) injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI). There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive parametric magnetic resonance imaging (MRI) may elucidate spatio-temporal pathophysiological changes in the kidney by monitoring the MR relaxation parameters T* and T, which are known to be sensitive to blood oxygenation. The aim of our study was to establish the technical feasibility of fast continuous T*/T mapping throughout renal I/R. MRI was combined with a remotely controlled I/R model and a segmentation model based semi-automated quantitative analysis. This technique enabled the detailed assessment of changes in all kidney regions during ischemia and early reperfusion. Significant changes in T* and T were observed shortly after induction of renal ischemia and during the initial reperfusion phase. Our study demonstrated for the first time that continuous and high temporal resolution parametric MRI is feasible for monitoring and characterization of I/R induced AKI in rats. This technique may help in the identification of the timeline of key events responsible for development of renal damage in hypoperfusion-induced AKI

    Vasopressin lowers renal epoxyeicosatrienoic acid levels by activating soluble epoxide hydrolase

    Get PDF
    Activation of the thick ascending limb (TAL) Na+-K+-2Cl--cotransporter (NKCC2) by the antidiuretic hormone arginine-vasopressin (AVP) is an essential mechanism of renal urine concentration and contributes to extracellular fluid and electrolyte homeostasis. AVP effects in the kidney are modulated by locally and/or by systemically produced epoxyeicosatrienoic acid derivates (EET). The relation between AVP and EET metabolism has not been determined. Here we show that chronic treatment of AVP-deficient Brattleboro rats with the AVP V2 receptor analog desmopressin (dDAVP; 5ng/h, 3d) significantly lowered renal EET levels (-56 +/- 3% for 5,6-EET, -50 +/- 3.4% for 11,12-EET, and -60 +/- 3.7% for 14,15-EET). The abundance of the principal EET-degrading enzyme soluble epoxide hydrolase (sEH) was increased at the mRNA (+160 +/- 37%) and protein levels (+120 +/- 26%). Immunohistochemistry revealed dDAVP-mediated induction of sEH in connecting tubules and cortical and medullary collecting ducts, suggesting a role of these segments in the regulation of local interstitial EET signals. Incubation of murine kidney cell suspensions with 1 {mu}M 14,15-EET for 30 min reduced phosphorylation of NKCC2 at the AVP-sensitive threonine residues T96 and T101 (-66 +/-5%; p<0.05) while 14,15-DHET had no effect. Concomitantly, isolated perfused cTAL pretreated with 14,15-EET showed a 30% lower transport current under high and a 70% lower transport current under low symetric chloride concentrations. In sum, we have shown that activation of AVP signaling stimulates renal sEH biosynthesis and enzyme activity. The resulting reduction of EET tissue levels may be instrumental for increased NKCC2 transport activity during AVP-induced antidiuresis

    Metal Bioavailability in the Sava River Water

    Get PDF
    Metals present one of the major contamination problems for freshwater systems, such as the Sava River, due to their high toxicity, persistence, and tendency to accumulate in sediment and living organisms. The comprehensive assessment of the metal bioavailability in the Sava River encompassed the analyses of dissolved and DGT-labile metal species of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the river water, as well as the evaluation of the accumulation of five metals (Cd, Cu, Fe, Mn, and Zn) in three organs (liver, gills, and gastrointestinal tissue) of the bioindicator organism, fish species European chub (Squalius cephalus L.).This survey was conducted mainly during the year 2006, in two sampling campaigns, in April/May and September, as periods representative for chub spawning and post-spawning. Additionally, metal concentrations were determined in the intestinal parasites acanthocephalans, which are known for their high affinity for metal accumulation. Metallothionein concentrations were also determined in three chub organs, as a commonly applied biomarker of metal exposure. Based on the metal concentrations in the river water, the Sava River was defined as weakly contaminated and mainly comparable with unpolluted rivers, which enabled the analyses of physiological variability of metal and metallothionein concentrations in the chub organs, as well as the establishment of their constitutive levels

    Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection (authors reply inN Engl J Med. 2005 May 12;352(19):2027-8)

    Get PDF
    BACKGROUND: Antibodies against HLA antigens cause refractory allograft rejection with vasculopathy in some, but not all, patients. METHODS: We studied 33 kidney-transplant recipients who had refractory vascular rejection. Thirteen had donor-specific anti-HLA antibodies, whereas 20 did not Malignant hypertension was present in 16 of the patients without anti-HLA antibodies, 4 of whom had seizures. The remaining 17 patients had no malignant hypertension. We hypothesized that activating antibodies targeting the angiotensin II type 1 (AT1) receptor might be involved. RESULTS: Activating IgG antibodies targeting the AT1 receptor were detected in serum from all 16 patients with malignant hypertension and without anti-HLA antibodies, but in no other patients. These receptor-activating antibodies are subclass IgG1 and IgG3 antibodies that bind to two different epitopes on the second extracellular loop of the AT1 receptor. Tissue factor expression was increased in renal-biopsy specimens from patients with these antibodies. In vitro stimulation of vascular cells with an AT1-receptor-activating antibody induced phosphorylation of ERK 1/2 kinase and increased the DNA binding activity of the transcription factors activator protein 1 (AP-1) and nuclear factor-κB. The AT1 antagonist losartan blocked agonistic AT1-receptor antibody-mediated effects, and passive antibody transfer induced vasculopathy and hypertension in a rat kidney-transplantation model. CONCLUSIONS: A non-HLA, AT1-receptor-mediated pathway may contribute to refractory vascular rejection, and affected patients might benefit from removal of AT 1-receptor antibodies or from pharmacologic blockade of AT 1 receptors

    Cell Culture Replication of a Genotype 1b Hepatitis C Virus Isolate Cloned from a Patient Who Underwent Liver Transplantation

    Get PDF
    The introduction of the genotype 2a isolate JFH1 was a major breakthrough in the field of hepatitis C virus (HCV), allowing researchers to study the complete life cycle of the virus in cell culture. However, fully competent culture systems encompassing the most therapeutically relevant HCV genotypes are still lacking, especially for the highly drug-resistant genotype 1b. For most isolated HCV clones, efficient replication in cultured hepatoma cells requires the introduction of replication-enhancing mutations. However, such mutations may interfere with viral assembly, as occurs in the case of the genotype 1b isolate Con1. In this study, we show that a clinical serum carrying a genotype 1b virus with an exceptionally high viral load was able to infect Huh7.5 cells. Similar to previous reports, inoculation of Huh7.5 cells by natural virus is very inefficient compared to infection by cell culture HCV. A consensus sequence of a new genotype 1b HCV isolate was cloned from the clinical serum (designated Barcelona HCV1), and then subjected to replication studies. This virus replicated poorly in a transient fashion in Huh7.5 cells after electroporation with in vitro transcribed RNA. Nonetheless, approximately 3 weeks post electroporation and thereafter, core protein-positive cells were detected by immunofluorescence. Surprisingly, small amounts of core protein were also measurable in the supernatant of electroporated cells, suggesting that HCV particles might be assembled and released. Our findings not only enhance the current method of cloning in vitro HCV replication-competent isolates, but also offer valuable insights for the realization of fully competent culture systems for HCV
    corecore