93 research outputs found

    The combination of gefitinib and RAD001 inhibits growth of HER2 overexpressing breast cancer cells and tumors irrespective of trastuzumab sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HER2-positive breast cancers exhibit high rates of innate and acquired resistance to trastuzumab (TZ), a HER2-directed antibody used as a first line treatment for this disease. TZ resistance may in part be mediated by frequent co-expression of EGFR and by sustained activation of the mammalian target of rapamycin (mTOR) pathway. Here, we assessed feasibility of combining the EGFR inhibitor gefitinib and the mTOR inhibitor everolimus (RAD001) for treating HER2 overexpressing breast cancers with different sensitivity to TZ.</p> <p>Methods</p> <p>The gefitinib and RAD001 combination was broadly evaluated in TZ sensitive (SKBR3 and MCF7-HER2) and TZ resistant (JIMT-1) breast cancer models. The effects on cell growth were measured in cell based assays using the fixed molar ratio design and the median effect principle. <it>In vivo </it>studies were performed in Rag2M mice bearing established tumors. Analysis of cell cycle, changes in targeted signaling pathways and tumor characteristics were conducted to assess gefitinib and RAD001 interactions.</p> <p>Results</p> <p>The gefitinib and RAD001 combination inhibited cell growth <it>in vitro </it>in a synergistic fashion as defined by the Chou and Talalay median effect principle and increased tumor xenograft growth delay. The improvement in therapeutic efficacy by the combination was associated <it>in vitro </it>with cell line dependent increases in cytotoxicity and cytostasis while treatment <it>in vivo </it>promoted cytostasis. The most striking and consistent therapeutic effect of the combination was increased inhibition of the mTOR pathway (<it>in vitro </it>and <it>in vivo</it>) and EGFR signaling <it>in vivo </it>relative to the single drugs.</p> <p>Conclusions</p> <p>The gefitinib and RAD001 combination provides effective control over growth of HER2 overexpressing cells and tumors irrespective of the TZ sensitivity status.</p

    Asymmetric Cell Divisions Sustain Long-Term Hematopoiesis from Single-sorted Human Fetal Liver Cells

    Get PDF
    Hematopoietic stem cells (HSCs) in adult marrow are believed to be derived from fetal liver precursors. To study cell kinetics involved in long-term hematopoiesis, we studied single-sorted candidate HSCs from fetal liver that were cultured in the presence of a mixture of stimulatory cytokines. After 8–10 d, the number of cells in primary cultures varied from <100 to >10,000 cells. Single cells in slow growing colonies were recloned upon reaching a 100–200 cell stage. Strikingly, the number of cells in subclones varied widely again. These results are indicative of asymmetric divisions in primitive hematopoietic cells in which proliferative potential and cell cycle properties are unevenly distributed among daughter cells. The continuous generation of functional heterogeneity among the clonal progeny of HSCs is in support of intrinsic control of stem cell fate and provides a model for the long-term maintenance of hematopoiesis in vitro and in vivo

    Suppression of Her2/neu expression through ILK inhibition is regulated by a pathway involving TWIST and YB-1

    Get PDF
    In a previous study it was found that the therapeutic effects of QLT0267, a small molecule inhibitor of integrin-linked kinase (ILK), were influenced by Her2/neu expression. To understand how inhibition or silencing of ILK influences Her2/neu expression, Her2/neu signaling was evaluated in six Her2/neu-positive breast cancer cell lines (LCC6Her2, MCF7Her2, SKBR3, BT474, JIMT-1 and KPL-4). Treatment with QLT0267 engendered suppression (32–87%) of total Her2/neu protein in these cells. Suppression of Her2/neu was also observed following small interfering RNA-mediated silencing of ILK expression. Time course studies suggest that ILK inhibition or silencing caused transient decreases in P-AKTser473, which were not temporally related to Her2/neu downregulation. Attenuation of ILK activity or expression was, however, associated with decreases in YB-1 (Y-box binding protein-1) protein and transcript levels. YB-1 is a known transcriptional regulator of Her2/neu expression, and in this study it is demonstrated that inhibition of ILK activity using QLT0267 decreased YB-1 promoter activity by 50.6%. ILK inhibition was associated with changes in YB-1 localization, as reflected by localization of cytoplasmic YB-1 into stress granules. ILK inhibition also suppressed TWIST (a regulator of YB-1 expression) protein expression. To confirm the role of ILK on YB-1 and TWIST, cells were engineered to overexpress ILK. This was associated with a fourfold increase in the level of YB-1 in the nucleus, and a 2- and 1.5-fold increase in TWIST and Her2/neu protein levels, respectively. Taken together, these data indicate that ILK regulates the expression of Her2/neu through TWIST and YB-1, lending support to the use of ILK inhibitors in the treatment of aggressive Her2/neu-positive tumors
    corecore