16 research outputs found
A Review of the Scientific Rigor, Reproducibility, and Transparency Studies Conducted by the ABRF Research Groups.
Shared research resource facilities, also known as core laboratories (Cores), are responsible for generating a significant and growing portion of the research data in academic biomedical research institutions. Cores represent a central repository for institutional knowledge management, with deep expertise in the strengths and limitations of technology and its applications. They inherently support transparency and scientific reproducibility by protecting against cognitive bias in research design and data analysis, and thedy have institutional responsibility for the conduct of research (research ethics, regulatory compliance, and financial accountability) performed in their Cores. The Association of Biomolecular Resource Facilities (ABRF) is a FASEB-member scientific society whose members are scientists and administrators that manage or support Cores. The ABRF Research Groups (RGs), representing expertise for an array of cutting-edge and established technology platforms, perform multicenter research studies to determine and communicate best practices and community-based standards. This review provides a summary of the contributions of the ABRF RGs to promote scientific rigor and reproducibility in Cores from the published literature, ABRF meetings, and ABRF RGs communications
The Neural Progenitor Cell-Associated Transcription Factor FoxG1 Regulates Cardiac Epicardial Cell Proliferation
The epicardium is a layer of mesothelial cells that covers the surface of the heart. During development, epicardial cells undergo epithelial-to-mesenchymal transition (EMT) to form multipotent precursors that migrate into the heart and contribute to the coronary vasculature by differentiating into adventitial fibroblasts, smooth muscle cells, and endothelial cells. Epicardial cells also provide paracrine signals to cardiac myocytes that are required for appropriate heart growth. In adult hearts, a similar process of epicardial cell EMT, migration, and differentiation occurs after myocardial infarction (MI, heart attack). Pathological cardiac hypertrophy is associated with fibrosis, negative remodeling, and reduced cardiac function. In contrast, aerobic exercises such as swimming and running promote physiological (i.e., beneficial) hypertrophy, which is associated with angiogenesis and improved cardiac function. As epicardial cell function(s) during physiological hypertrophy are poorly understood, we analyzed and compared the native epicardial cells isolated directly from the hearts of running-exercised mice and age-matched, nonrunning littermates. To obtain epicardial cells, we enzymatically digested the surfaces of whole hearts and performed magnetic-activated cell sorting (MACS) with antibodies against CD104 (integrin β4). By cDNA microarray assays, we identified genes with increased transcription in epicardial cells after running exercise; these included FoxG1, a transcription factor that controls neural progenitor cell proliferation during brain development and Snord116, a small noncoding RNA that coordinates expression of genes with epigenetic, circadian, and metabolic functions. In cultured epicardial cells, shRNA-mediated FoxG1 knockdown significantly decreased cell proliferation, as well as Snord116 expression. Our results demonstrate that FoxG1 regulates epicardial proliferation, and suggest it may affect cardiac remodeling
Sex-Specific Control of Central Nervous System Autoimmunity by p38 Mitogen-Activated Protein Kinase Signaling in Myeloid Cells
OBJECTIVE: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. METHODS: Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. RESULTS: Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38α signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38α in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38α-controlled transcripts comprising female- and male-specific gene modules, with greater p38α dependence of pro-inflammatory gene expression in females. INTERPRETATION: Our findings demonstrate a key role for p38α in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS
The Intrinsic Activity of Thyroxine is Critical for Survival and Growth and Regulates Gene expression in Neonatal Liver.
BACKGROUND: Thyroxine (T4) is generally considered to be a pro-hormone that requires conversion to 3,5,3\u27-triiodothyronine (T3) to exert biological activity. Although evidence suggests that T4 has intrinsic activity, it is questionable if this activity has any physiological relevance.
METHODS: To answer this question, triple KO mice (Triples) that cannot express the types 1 (D1) and 2 (D2) deiodinase and the Pax8 genes were generated. Thus they lack a thyroid and cannot convert T4 to T3. Triples were injected on alternate days with either vehicle or physiological doses of T4, T3 or T3+T4 from postnatal days 2 to 14. They were euthanized at P15 and RNA-seq was employed to profile gene expression in liver. In another experiment, Pax8KO mice were injected with T3, T4 or T4 +T3, and growth rate and survival to P84 were determined.
RESULTS: The growth retardation of Triples was not improved by either T3 or T4 alone but was significantly improved by T4+T3. In liver, T4 significantly regulated the expression of genes that were also regulated by T3, but the proportion of genes that were negatively regulated was higher in mice treated with T4 than with T3. Treatment with T4+T3 identified genes that were regulated synergistically by T3 and T4, and genes that were regulated only by T4+T3. Analysis of these genes revealed enrichment in mechanisms related to cell proliferation and cholesterol physiology, suggesting a unique contribution of T4 to these biological functions. Pax8KO mice all survived to P84 when injected with T4 or T4+T3. However, survival rate with T3 was only 50% and 10% at 3.5 and 12 weeks of life, respectively.
CONCLUSION: T4 has intrinsic activity in vivo and is critical for survival and growth. At a physiological level, T4 per se can up- or down-regulate many T3 target genes in the neonatal liver. While most of these genes are also regulated by T3, subsets respond exclusively to T4 or demonstrate enhanced or normalized expression only in the presence of both hormones. These studies demonstrate for the first time a complex dependency on both T4 and T3 for normal mammalian growth and development
Metagenomic analysis of Aedes aegypti and Culex quinquefasciatus mosquitoes from Grenada, West Indies.
The mosquitoes Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) and Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) are two major vectors of arthropod-borne pathogens in Grenada, West Indies. As conventional vector control methods present many challenges, alternatives are urgently needed. Manipulation of mosquito microbiota is emerging as a field for the development of vector control strategies. Critical to this vector control approach is knowledge of the microbiota of these mosquitoes and finding candidate microorganisms that are common to the vectors with properties that could be used in microbiota modification studies. Results showed that bacteria genera including Asaia, Escherichia, Pantoea, Pseudomonas, and Serratia are common to both major arboviral vectors in Grenada and have previously been shown to be good candidates for transgenetic studies. Also, for the first time, the presence of Grenada mosquito rhabdovirus 1 is reported in C. quinquefasciatus
Bioinformatics Core Survey Highlights the Challenges Facing Data Analysis Facilities.
Over the last decade, the cost of -omics data creation has decreased 10-fold, whereas the need for analytical support for those data has increased exponentially. Consequently, bioinformaticians face a second wave of challenges: novel applications of existing approaches (e.g., single-cell RNA sequencing), integration of -omics data sets of differing size and scale (e.g., spatial transcriptomics), as well as novel computational and statistical methods, all of which require more sophisticated pipelines and data management. Nonetheless, bioinformatics cores are often asked to operate under primarily a cost-recovery model, with limited institutional support. Seeing the need to assess bioinformatics core operations, the Association of Biomolecular Resource Facilities Genomics Bioinformatics Research Group conducted a survey to answer questions about staffing, services, financial models, and challenges to better understand the challenges bioinformatics core facilities are currently faced with and will need to address going forward. Of the respondent groups, we chose to focus on the survey data from smaller cores, which made up the majority. Although all cores indicated similar challenges in terms of changing technologies and analysis needs, small cores tended to have the added challenge of funding their operations largely through cost-recovery models with heavy administrative burdens
Bioinformatics Core Survey Highlights the Challenges Facing Data Analysis Facilities
Over the last decade, the cost of -omics data creation has decreased 10-fold, whereas the need for analytical support for those data has increased exponentially. Consequently, bioinformaticians face a second wave of challenges: novel applications of existing approaches (e.g., single-cell RNA sequencing), integration of -omics data sets of differing size and scale (e.g., spatial transcriptomics), as well as novel computational and statistical methods, all of which require more sophisticated pipelines and data management. Nonetheless, bioinformatics cores are often asked to operate under primarily a cost-recovery model, with limited institutional support. Seeing the need to assess bioinformatics core operations, the Association of Biomolecular Resource Facilities Genomics Bioinformatics Research Group conducted a survey to answer questions about staffing, services, financial models, and challenges to better understand the challenges bioinformatics core facilities are currently faced with and will need to address going forward. Of the respondent groups, we chose to focus on the survey data from smaller cores, which made up the majority. Although all cores indicated similar challenges in terms of changing technologies and analysis needs, small cores tended to have the added challenge of funding their operations largely through cost-recovery models with heavy administrative burdens