3,709 research outputs found

    Ultraminiature television camera

    Get PDF
    Ultraminiature television camera with a total volume of 20.25 cubic inches, requires 28 vdc power, operates on UHF and accommodates standard 8-mm optics. It uses microelectronic assembly packaging techniques and contains a magnetically deflected and electrostatically focused vidicon, automatic gain control circuit, power supply, and transmitter

    Formation of Quark Phases in compact stars and their connection to Gamma-Ray-Bursts

    Full text link
    We analyse the occurrence of quiescent times in the temporal structure of the Gamma-Ray-Bursts (GRBs) light curves. We show that if a long quiescent time is present, it is possible to divide the total duration of GRBs into three periods: the pre-quiescence emission, the quiescent time and the post-quiescence emission. We then discuss a model of the GRBs inner engine based on the formation of quark phases during the life of an hadronic star. Within this model the pre-quiescence emission is interpreted as due to the deconfinement of quark inside an hadronic star and the formation of 2SC quark matter. The post-quiescence emission is due to the conversion of 2SC into the Color-Flavor-Locking (CFL) phase. The temporal delay between these two processes is connected with the nucleation time of the CFL phase in the 2SC phase and it can be associated with the observed quiescent times in the GRBs light curves. The stability of CFL cores in compact stars is also discussed.Comment: 6 pages, 3 figures, to appear in the proceedings of 3th International Conference on Nuclear Physics in Astrophysics (NPAIII), 26 - 31 March 2007 Dresden, German

    A 1.2-V 10- µW NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2 °C (3σ) From 70 °C to 125 °C

    Get PDF
    An NPN-based temperature sensor with digital output transistors has been realized in a 65-nm CMOS process. It achieves a batch-calibrated inaccuracy of ±0.5 ◦C (3¾) and a trimmed inaccuracy of ±0.2 ◦C (3¾) over the temperature range from −70 ◦C to 125 ◦C. This performance is obtained by the use of NPN transistors as sensing elements, the use of dynamic techniques, i.e. correlated double sampling and dynamic element matching, and a single room-temperature trim. The sensor draws 8.3 μA from a 1.2-V supply and occupies an area of 0.1 mm2

    Comparison of Magnetic Flux Distribution between a Coronal Hole and a Quiet Region

    Full text link
    Employing Big Bear Solar Observatory (BBSO) deep magnetograms and Hα{\alpha} images in a quiet region and a coronal hole, observed on September 14 and 16, 2004, respectively, we have explored the magnetic flux emergence, disappearance and distribution in the two regions. The following results are obtained: (1) The evolution of magnetic flux in the quiet region is much faster than that in the coronal hole, as the flux appeared in the form of ephemeral regions in the quiet region is 4.3 times as large as that in the coronal hole, and the flux disappeared in the form of flux cancellation, 2.9 times as fast as in the coronal hole. (2) More magnetic elements with opposite polarities in the quiet region are connected by arch filaments, estimating from magnetograms and Hα{\alpha} images. (3) We measured the magnetic flux of about 1000 magnetic elements in each observing region. The flux distribution of network and intranetwork (IN) elements is similar in both polarities in the quiet region. For network fields in the coronal hole, the number of negative elements is much more than that of positive elements. However for the IN fields, the number of positive elements is much more than that of negative elements. (4) In the coronal hole, the fraction of negative flux change obviously with different threshold flux density. 73% of the magnetic fields with flux density larger than 2 Gauss is negative polarity, and 95% of the magnetic fields is negative, if we only measure the fields with their flux density larger than 20 Gauss. Our results display that in a coronal hole, stronger fields is occupied by one predominant polarity; however the majority of weaker fields, occupied by the other polarity

    Effectiveness evaluation of STOL transport operations

    Get PDF
    A short-takeoff and landing (STOL) systems simulation model has been developed and implemented in a computer code (known as STOL OPS) which permits evaluation of the operation of a STOL aircraft and its avionics in a commercial airline operating environment. STOL OPS concentrated on the avionics functions of navigation, guidance, control, communication, hazard aviodance, and systems management. External world factors influencing the operation of the STOL aircraft include each airport and its geometry, air traffic at each airport, air traffic control equipment and procedures, weather (including winds and visibility), and the flight path between each airport served by the route. The development of the STOL OPS program provides NASA a set of computer programs which can be used for detailed analysis of a STOL aircraft and its avionics and permit establishment of system requirements as a function of airline mission performance goals

    DLR-KMS correspondence on lattice spin systems

    Full text link
    The Dobrushin-Lanford-Ruelle (DLR) condition and the classical Kubo-Martin-Schwinger (KMS) condition are considered in the context of classical lattice systems. In particular, we prove that these conditions are equivalent for the case of a lattice spin system with values in a compact symplectic manifold by showing that infinite volume Gibbs states are in bijection with KMS states.Comment: 13 page

    Conceptualizing a Model for Teacher Team Learning: The Promise of Integration of Diversity of Perspectives During Team Learning

    Get PDF
    Many studies have emphasized that the integration of divergent perspectives is the central to teacher team learning, but it is difficult for teacher teams. This is because it is necessary to consider the multi-layers of team learning to foster the integration. However, existing research has focused only on a unidimensional aspect. Therefore, we conceptualize a comprehensive theoretical model for teacher team learning with focus on integration of perspective by incorporating multiple aspects, including (a) not only the cognitive dimension, but also the affective, relational and motivational dimensions and (b) not only a team level, but also a system (organizational) level
    corecore