14 research outputs found

    In Vivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer

    Get PDF
    SummaryCurrent treatment regimens for pancreatic ductal adenocarcinoma (PDAC) yield poor 5-year survival, emphasizing the critical need to identify druggable targets essential for PDAC maintenance. We developed an unbiased and in vivo target discovery approach to identify molecular vulnerabilities in low-passage and patient-derived PDAC xenografts or genetically engineered mouse model-derived allografts. Focusing on epigenetic regulators, we identified WDR5, a core member of the COMPASS histone H3 Lys4 (H3K4) MLL (1–4) methyltransferase complex, as a top tumor maintenance hit required across multiple human and mouse tumors. Mechanistically, WDR5 functions to sustain proper execution of DNA replication in PDAC cells, as previously suggested by replication stress studies involving MLL1, and c-Myc, also found to interact with WDR5. We indeed demonstrate that interaction with c-Myc is critical for this function. By showing that ATR inhibition mimicked the effects of WDR5 suppression, these data provide rationale to test ATR and WDR5 inhibitors for activity in this disease

    Oxidative Phosphorylation Is a Metabolic Vulnerability in Chemotherapy-Resistant Triple-Negative Breast Cance

    Get PDF
    Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX). On gene expression profiling, all of the sensitive models displayed a basal-like 1 TNBC subtype. Expression of mitochondrial genes was significantly higher in sensitive PDXs. An in vivo functional genomics screen to identify synthetic lethal targets in tumors treated with IACS-10759 found several potential targets, including CDK4. We validated the antitumor efficacy of the combination of palbociclib, a CDK4/6 inhibitor, and IACS-10759 in vitro and in vivo. In addition, the combination of IACS-10759 and multikinase inhibitor cabozantinib had improved antitumor efficacy. Taken together, our data suggest that OXPHOS is a metabolic vulnerability in TNBC that may be leveraged with novel therapeutics in combination regimens. SIGNIFICANCE: These findings suggest that triple-negative breast cancer is highly reliant on OXPHOS and that inhibiting OXPHOS may be a novel approach to enhance efficacy of several targeted therapies

    PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development. Statement of significance PDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors

    UBPY: a growth-regulated human ubiquitin isopeptidase.

    No full text
    The ubiquitin pathway has been implicated in the regulation of the abundance of proteins that control cell growth and proliferation. We have identified and characterized a novel human ubiquitin isopeptidase, UBPY, which both as a recombinant protein and upon immunoprecipitation from cell extracts is able to cleave linear or isopeptide-linked ubiquitin chains. UBPY accumulates upon growth stimulation of starved human fibroblasts, and its levels decrease in response to growth arrest induced by cell-cell contact. Inhibition of UBPY accumulation by antisense plasmid microinjection prevents fibroblasts from entering S-phase in response to serum stimulation. By increasing or decreasing the cellular abundance of UBPY or by overexpressing a catalytic site mutant, we detect substantial changes in the total pattern of protein ubiquitination, which correlate stringently with cell proliferation. Our results suggest that UBPY plays a role in regulating the overall function of the ubiquitin-proteasome pathway. Affecting the function of a specific UBP in vivo could provide novel tools for controlling mammalian cell proliferation

    Dissection of clonal heterogeneity unmasks pre-existing chemoresistance and new metabolic vulnerabilities in pancreatic cancer

    No full text
    Adaptive drug-resistance mechanisms allow human tumors to evade treatment through selection and expansion of treatment-resistant clones. Modeling the functional heterogeneity of tumors can unmask critical contributions of distinct tumor cell sub-populations toward identifying rational drug combinations. Here, studying clonal evolution of tumor cells derived from human pancreatic tumors, we demonstrate that in vitro adherent cultures and in vivo tumors are maintained by a common set of long term self-renewing tumorigenic cells that can be used to establish clonal replica tumors (CRTs), large cohorts of animals bearing human tumors with identical clonal composition. Using CRTs to conduct quantitative assessments of clonal dynamics and adaptive responses to therapeutic challenge over time, we uncovered that the tumorigenic compartment of pancreatic tumors maintains a multitude of functionally heterogeneous subpopulations of cells with differential degrees of sensitivity to therapeutics. High-throughput isolation and deep characterization of unique clonal lineages showed genetic and transcriptomic diversity underlying the functionally diverse subpopulations, positioning the origins of tumor heterogeneity within the long-term self-renewing compartment. Molecular annotation of gemcitabine-naïve clonal lineages with distinct responses to treatment in the context of CRTs generated signatures that can predict the response to chemotherapy and exposed pre-existing functional mechanisms of clonal resistance, primarily associated to DNA damage tolerance and mitochondrial respiration (OXPHOS). Further transcriptomic and metabolic characterization of residual tumor cells in patient derived xenograft models as well as in patients after chemoradiation showed that resistant cells that contribute to tumor relapse are metabolically rewired to upregulate OXPHOS. Combining a novel inhibitor of oxidative phosphorylation (IACS-10759) developed at the MD Anderson Institute for Applied Cancer Science, and currently in phase I clinical trial in acute myeloid leukemia and solid tumors, with standard of care drugs drastically reduces tumor clonal complexity, underscoring the promise of inhibiting mitochondrial respiration as a new therapeutic strategy to prolong patient survival by eradicating resistant clones that survive chemoradiation. Our study, correlating genomic and transcriptomic traits with specific functional phenotypes, uncovered new mechanisms that underlie intra-tumor sub-clonal heterogeneity, influence treatment response to drugs and sustain tumor relapse

    Pre-existing Functional Heterogeneity of Tumorigenic Compartment as the Origin of Chemoresistance in Pancreatic Tumors

    No full text
    Summary: Adaptive drug-resistance mechanisms allow human tumors to evade treatment through selection and expansion of treatment-resistant clones. Here, studying clonal evolution of tumor cells derived from human pancreatic tumors, we demonstrate that in vitro cultures and in vivo tumors are maintained by a common set of tumorigenic cells that can be used to establish clonal replica tumors (CRTs), large cohorts of animals bearing human tumors with identical clonal composition. Using CRTs to conduct quantitative assessments of adaptive responses to therapeutics, we uncovered a multitude of functionally heterogeneous subpopulations of cells with differential degrees of drug sensitivity. High-throughput isolation and deep characterization of unique clonal lineages showed genetic and transcriptomic diversity underlying functionally diverse subpopulations. Molecular annotation of gemcitabine-naive clonal lineages with distinct responses to treatment in the context of CRTs generated signatures that can predict the response to chemotherapy, representing a potential biomarker to stratify patients with pancreatic cancer. : High-complexity lineage tracing shows that tumors growing in different environments are maintained by a common set of tumorigenic cells that enables the generation of clonal replica tumors (CRTs). Applying CRTs, Seth et al. unmask functional heterogeneity in response to therapeutics and identify a signature that predicts chemoresistance in pancreatic cancer. Keywords: tumor heterogeneity, functional heterogeneity, lineage tracing, clonal dynamics, clonal isolation, pancreatic cancer, drug resistance, subclonal gene signature, prognostic stratificatio
    corecore