332 research outputs found

    A New Officer for a New Army: The Leadership of Major Hugh J.C. Peirs in the Great War

    Full text link
    World War One brought dramatic changes to the officer corps of the British Expeditionary Force (BEF) fighting on the Western Front. The heavy casualties sustained meant that mass mobilization at home had to take place in order to replace combat losses. As a result, the previously small, but professional British army was forced to transition into a large citizen-soldier army. This new force required not just new officers, but an entirely new leadership model. The formation and exercise of this new style of leadership is examined through the letters of Major John Hugh Chevalier Peirs, executive officer and later commander of the 8th Queen’s Royal West Surrey Regiment who served on the Western Front from 1915-1918. Major Peirs’ letters highlight the emergence of this new breed of leadership within Kitchener’s New Army and make clear why its emergence was so important to the overall morale and success of the BEF

    Mapping the human amylase gene cluster on the proximal short arm of chromosome 1 using a highly informative (CA)n repeat

    Full text link
    The human amylase gene cluster includes a (CA)n repeat sequence immediately upstream of the [gamma]-actin pseudogene associated with the AMY2B gene. Analysis of this (CA)n repeat by PCR amplification of genomic DNA from the 40 families of the Centre d'Etude du Polymorphisme Humain (CEPH) reference panel revealed extensive polymorphism. A total of six alleles with (CA)n lengths of 16-21 repeats were found. The average heterozygosity for this polymorphism was 0.70. Multipoint linkage analysis showed that the amylase gene cluster is located distal to the nerve growth factor [beta]-subunit gene (NGFB) and is within 1 cM of the anonymous locus D1S10. The amylase (CA)n repeat provides a convenient marker for both the physical and the genetic maps of human chromosome 1p.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28584/1/0000391.pd

    Colorectal cancer-related mutant KRAS alleles function as positive regulators of autophagy

    Get PDF
    The recent interest to modulate autophagy in cancer therapy has been hampered by the dual roles of this conserved catabolic process in cancer, highlighting the need for tailored approaches. Since RAS isoforms have been implicated in autophagy regulation and mutation of the KRAS oncogene is highly frequent in colorectal cancer (CRC), we questioned whether/how mutant KRAS alleles regulate autophagy in CRC and its implications. We established two original models, KRAS-humanized yeast and KRAS-non-cancer colon cells and showed that expression of mutated KRAS up-regulates starvation-induced autophagy in both. Accordingly, KRAS down-regulation inhibited autophagy in CRC-derived cells harboring KRAS mutations. We further show that KRAS-induced autophagy proceeds via up-regulation of the MEK/ERK pathway in both colon models and that KRAS and autophagy contribute to CRC cell survival during starvation. Since KRAS inhibitors have proven difficult to develop, our results suggest using autophagy inhibitors as a combined/alternative therapeutic approach in CRCs with mutant KRAS.This work was supported by FCT/MEC through Portuguese funds (PIDDAC) - PEst-OE/BIA/UI4050/2014 and FCT I.P. through the strategic funding UID/BIA/04050/2013 as well as by FCT through projects PTDC/BIA-BCM/69448/2006 and FCT-ANR/BEX-BCM/0175/2012, as well as fellowships to S.A. (SFRH/BD/64695/2009) and S.R.C. (SFRH/BPD/89980/2012).info:eu-repo/semantics/publishedVersio

    Candidate target genes for loss of heterozygosity on human chromosome 17q21

    Get PDF
    Loss of heterozygosity (LOH) on chromosome 17q21 has been detected in 30% of primary human breast tumours. The smallest common region deleted occurred in an interval between the D17S746 and D17S846 polymorphic sequences tagged sites that are located on two recombinant PI-bacteriophage clones of chromosome 17q21: 122F4 and 50H1, respectively. To identify the target gene for LOH, we defined a map of this chromosomal region. We found the following genes: JUP, FK506BP10, SC65, Gastrin (GAS) and HAP1. Of the genes that have been identified in this study, only JUP is located between D17S746 and D17S846. This was of interest since earlier studies have shown that JUP expression is altered in breast, lung and thyroid tumours as well as cell lines having LOH in chromosome 17q21. However, no mutations were detected in JUP using single-strand conformation polymorphism analysis of primary breast tumour DNAs having LOH at 17q21. We could find no evidence that the transcription promoter for JUP is methylated in tumour DNAs having LOH at 17q21. We suspect that the target gene for LOH in primary human breast tumours on chromosome 17q21 is either JUP and results in a haploinsufficiency for expression or may be an unidentified gene located in the interval between D17S846 and JUP. © 2004 Cancer Research UK

    Variation in erythrocyte enzyme activity among primate species

    Full text link
    1. 1. Significant differences between species in the mean level of enzyme activity, ranging from 50 to 400%, were detected during a study of 10 enzymes from erythrocytes of humans and five non-human primates.2. 2. The activity differences were consistent with variation, between species, at the structural loci for specific enzymes rather than differences in mean cell age, hemoglobin content or other pleiotropic effects.3. 3. For seven of the eight loci at which direct comparisons among the six species could be made, the number of species-specific activity differences was greater than the number of variants observed by electrophoresis.4. 4. Thus not only do activity measurements detect previously "hidden" variation among species but they also provide information regarding genetic differences which may be of potential physiological and/or selective relevance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25015/1/0000442.pd

    Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival

    Get PDF
    The distal half of chromosome 1p was analysed with 15 polymorphic microsatellite markers in 683 human solid tumours at different locations. Loss of heterozygosity (LOH) was observed at least at one site in 369 cases or 54% of the tumours. LOHs detected ranged from 30–64%, depending on tumour location. The major results regarding LOH at different tumour locations were as follows: stomach, 20/38 (53%); colon and rectum, 60/109 (55%); lung, 38/63 (60%); breast, 145/238 (61%); endometrium, 18/25 (72%); ovary, 17/31 (55%); testis, 11/30 (37%); kidney, 22/73 (30%); thyroid, 4/14 (29%); and sarcomas, 9/14 (64%). High percentages of LOH were seen in the 1p36.3, 1p36.1, 1p35–p34.3, 1p32 and 1p31 regions, suggesting the presence of tumour-suppressor genes. All these regions on chromosome 1p show high LOH in more than one tumour type. However, distinct patterns of LOH were detected at different tumour locations. There was a significant separation of survival curves, with and without LOH at chromosome 1p, in the breast cancer patients. Multivariate analysis showed that LOH at 1p in breast tumours is a better indicator for prognosis than the other variables tested in our model, including nodal metastasis. © 1999 Cancer Research Campaig

    Cytogenetics of human malignant melanoma

    Full text link
    There has been a tremendous recent resurgence of interest in examining chromosomal abnormalities in human cancers (particularly solid tumors). This interest has been stimulated by the molecular examination of recurring chromosome abnormalities, and the recognition that they may pinpoint the location of growth regulatory sequences (e.g. cellular oncogenes). This finding coupled with the clear recognition that specific chromosome abnormalities can also have important diagnostic and prognostic implications, have caused this avenue of research to expand at a significant rate. The following brief review will summarize the current state of knowledge regarding recurring chromosome abnormalities in human malignant melanoma. A discussion of chromosome changes in pre-malignant skin lesions, primary melanoma, and metastatic melanoma is described. Brief descriptions of the potential clinical utility, and biologic relevance of chromosome abnormalities in this disorder are also discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44500/1/10555_2004_Article_BF00049408.pd

    Mouse Chromosome 3

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46995/1/335_2004_Article_BF00648421.pd
    • …
    corecore