88 research outputs found

    Phylogenetic analysis of the tenascin gene family: evidence of origin early in the chordate lineage

    Get PDF
    BACKGROUND: Tenascins are a family of glycoproteins found primarily in the extracellular matrix of embryos where they help to regulate cell proliferation, adhesion and migration. In order to learn more about their origins and relationships to each other, as well as to clarify the nomenclature used to describe them, the tenascin genes of the urochordate Ciona intestinalis, the pufferfish Tetraodon nigroviridis and Takifugu rubripes and the frog Xenopus tropicalis were identified and their gene organization and predicted protein products compared with the previously characterized tenascins of amniotes. RESULTS: A single tenascin gene was identified in the genome of C. intestinalis that encodes a polypeptide with domain features common to all vertebrate tenascins. Both pufferfish genomes encode five tenascin genes: two tenascin-C paralogs, a tenascin-R with domain organization identical to mammalian and avian tenascin-R, a small tenascin-X with previously undescribed GK repeats, and a tenascin-W. Four tenascin genes corresponding to tenascin-C, tenascin-R, tenascin-X and tenascin-W were also identified in the X. tropicalis genome. Multiple sequence alignment reveals that differences in the size of tenascin-W from various vertebrate classes can be explained by duplications of specific fibronectin type III domains. The duplicated domains are encoded on single exons and contain putative integrin-binding motifs. A phylogenetic tree based on the predicted amino acid sequences of the fibrinogen-related domains demonstrates that tenascin-C and tenascin-R are the most closely related vertebrate tenascins, with the most conserved repeat and domain organization. Taking all lines of evidence together, the data show that the tenascins referred to as tenascin-Y and tenascin-N are actually members of the tenascin-X and tenascin-W gene families, respectively. CONCLUSION: The presence of a tenascin gene in urochordates but not other invertebrate phyla suggests that tenascins may be specific to chordates. Later genomic duplication events led to the appearance of four family members in vertebrates: tenascin-C, tenascin-R, tenascin-W and tenascin-X

    C. elegans rrf-1 Mutations Maintain RNAi Efficiency in the Soma in Addition to the Germline

    Get PDF
    Gene inactivation through RNA interference (RNAi) has proven to be a valuable tool for studying gene function in C. elegans. When combined with tissue-specific gene inactivation methods, RNAi has the potential to shed light on the function of a gene in distinct tissues. In this study we characterized C. elegans rrf-1 mutants to determine their ability to process RNAi in various tissues. These mutants have been widely used in RNAi studies to assess the function of genes specifically in the C. elegans germline. Upon closer analysis, we found that two rrf-1 mutants carrying different loss-of-function alleles were capable of processing RNAi targeting several somatically expressed genes. Specifically, we observed that the intestine was able to process RNAi triggers efficiently, whereas cells in the hypodermis showed partial susceptibility to RNAi in rrf-1 mutants. Other somatic tissues in rrf-1 mutants, such as the muscles and the somatic gonad, appeared resistant to RNAi. In addition to these observations, we found that the rrf-1(pk1417) mutation induced the expression of several transgenic arrays, including the FOXO transcription factor DAF-16. Unexpectedly, rrf-1(pk1417) mutants showed increased endogenous expression of the DAF-16 target gene sod-3; however, the lifespan and thermo-tolerance of rrf-1(pk1417) mutants were similar to those of wild-type animals. In sum, these data show that rrf-1 mutants display several phenotypes not previously appreciated, including broader tissue-specific RNAi-processing capabilities, and our results underscore the need for careful characterization of tissue-specific RNAi tools
    • …
    corecore