8 research outputs found

    Repurposing HLA genotype data of renal transplant patients to prevent severe drug hypersensitivity reactions

    Get PDF
    Introduction: Specific alleles in human leukocyte antigens (HLAs) are associated with an increased risk of developing drug hypersensitivity reactions induced by abacavir, allopurinol, carbamazepine, oxcarbazepine, phenytoin, lamotrigine, or flucloxacillin. Transplant patients are genotyped for HLA as a routine practice to match a potential donor to a recipient. This study aims to investigate the feasibility and potential impact of repurposing these HLA genotype data from kidney transplant patients to prevent drug hypersensitivity reactions.Methods: A cohort of 1347 kidney transplant recipients has been genotyped in the Leiden University Medical Center (LUMC) using next-generation sequencing (NGS). The risk alleles HLA-A*31:01, HLA-B*15:02, HLA-B*15:11, HLA-B*57:01, and HLA-B*58:01 were retrieved from the NGS data. Medical history, medication use, and allergic reactions were obtained from the patient's medical records. Carrier frequencies found were compared to a LUMC blood donor population.Results: A total of 13.1% of transplant cohort patients carried at least one of the five HLA risk alleles and therefore had an increased risk of drug-induced hypersensitivity for specific drugs. HLA-A*31:01, HLA-B*15:02, HLA-B*57:01, and HLA-B*58:01 were found in carrier frequencies of 4.61%, 1.19%, 4.46%, and 3.35% respectively. No HLA-B*15:11 carrier was found. In total nine HLA-B*57:01 carriers received flucloxacillin and seven HLA-B*58:01 carriers within our cohort received allopurinol.Discussion: Our study shows that repurposing HLA genotype data from transplantation patients for the assignment of HLA risk alleles associated with drug hypersensitivity is feasible. The use of these data by physicians while prescribing drugs or by the pharmacist when dispensing drugs holds the potential to prevent drug hypersensitivity reactions. The utility of this method was highlighted by 13.1% of the transplant cohort patients carrying an actionable HLA allele. </p

    A possible role for HLA-G in development of uteroplacental acute atherosis in preeclampsia

    Get PDF
    HLA-G, a non-classical HLA molecule expressed by extravillous trophoblasts, plays a role in the maternal immune tolerance towards fetal cells. HLA-G expression is regulated by genetic polymorphisms in the 3' untranslated region (3'UTR). Low levels of HLA-G in the maternal circulation and placental tissue are linked to preeclampsia. Our objective was to investigate whether variants of the 3'UTR of the HLA-G gene in mother and fetus are associated with acute atherosis, a pregnancy specific arterial lesion of the decidua basalis that is prevalent in preeclampsia. Paired maternal and fetal DNA samples from 83 normotensive and 83 preeclamptic pregnancies were analyzed. We sequenced the part of the HLA-G 3'UTR containing a 14-bp insertion/deletion region and seven single nucleotide polymorphisms (SNPs). Associations with acute atherosis were tested by logistic regression. The frequency of heterozygosity for the 14-bp polymorphism (Ins/Del) and the +3142 SNP (C/G) variant in the fetus are associated with acute atherosis in preeclampsia (66.7 % vs. 39.6 %, p = 0.039, and 69.0 % vs. 43.4 %, p = 0.024). Furthermore, the fetal UTR-3 haplotype, which encompasses the 14-bp deletion and the +3142G variant, is associated with acute atherosis in preeclampsia (15 % vs. 3.8 %, p = 0.016). In conclusion, HLA-G polymorphisms in the fetus are associated with acute atherosis. We hypothesize that these polymorphisms lead to altered HLA-G expression in the decidua basalis, affecting local feto-maternal immune tolerance and development of acute atherosis

    A Uniform Genomic Minor Histocompatibility Antigen Typing Methodology and Database Designed to Facilitate Clinical Applications

    Get PDF
    BACKGROUND: Minor Histocompatibility (H) antigen mismatches significantly influence the outcome of HLA-matched allogeneic stem cell transplantation. The molecular identification of human H antigens is increasing rapidly. In parallel, clinical application of minor H antigen typing has gained interest. So far, relevant and simple tools to analyze the minor H antigens in a quick and reliable way are lacking. METHODOLOGY AND FINDINGS: We developed a uniform PCR with sequence-specific primers (PCR-SSP) for 10 different autosomal minor H antigens and H-Y. This genomic minor H antigen typing methodology allows easy incorporation in the routine HLA typing procedures. DNA from previously typed EBV-LCL was used to validate the methodology. To facilitate easy interpretation for clinical purposes, a minor H database named dbMinor (http://www.lumc.nl/dbminor) was developed. Input of the minor H antigen typing results subsequently provides all relevant information for a given patient/donor pair and additional information on the putative graft-versus-host, graft-versus-tumor and host-versus-graft reactivities. SIGNIFICANCE: A simple, uniform and rapid methodology was developed enabling determination of minor H antigen genotypes of all currently identified minor H antigens. A dbMinor database was developed to interpret the genomic typing for its potential clinical relevance. The combination of the minor H antigen genomic typing methodology with the online dbMinor database and applications facilitates the clinical application of minor H antigens anti-tumor targets after stem cell transplantation

    The combination of maternal KIR-B and fetal HLA-C2 is associated with decidua basalis acute atherosis in pregnancies with preeclampsia

    No full text
    Acute atherosis is an arterial lesion most often occurring in pregnancies complicated by preeclampsia, a hypertensive pregnancy disorder. Acute atherosis predominates in the maternal spiral arteries in the decidua basalis layer of the pregnant uterus. This layer forms the fetal-maternal immunological interface, where fetal extravillous trophoblasts interact with maternal immune cells to promote decidual spiral artery remodeling and maternal immune tolerance towards the fetus. Of the classical polymorphic class I HLAs, extravillous trophoblasts express only HLA-C. HLA-C is a ligand for killer immunoglobulin-like receptors (KIR) on NK- and T-cells. Genetic combinations of fetal HLA-C and maternal KIRs affect pregnancy outcome. However, the role of HLA and KIR genes in acute atherosis is unknown. We hypothesized that specific genetic combinations of fetal HLA and maternal KIR are associated with the presence of acute atherosis lesions in the decidua basalis. We genotyped HLA class-I and II loci in paired fetal and maternal DNA samples from 166 pregnancies (83 preeclamptics, 83 controls). Acute atherosis was identified in 38 of these. Maternal KIR-loci were also genotyped. We found that the combination of maternal KIR-B haplotype and fetal HLA-C2 was significantly associated with acute atherosis in preeclampsia. In preeclamptic pregnancies with acute atherosis, 60% had this combination, compared to 24.5% in those without acute atherosis (p = 0.001). We suggest that interactions between fetal HLA-C2 and activating KIRs on maternal decidual NK-cells or T-cells may contribute to the formation of acute atherosis by promoting local decidual vascular inflammation

    Increased HLA-G Expression in Term Placenta of Women with a History of Recurrent Miscarriage Despite Their Genetic Predisposition to Decreased HLA-G Levels

    No full text
    Human leukocyte antigen (HLA)-G is an immune modulating molecule that is present on fetal extravillous trophoblasts at the fetal-maternal interface. Single nucleotide polymorphisms (SNPs) in the 3 prime untranslated region (3&#8242;UTR) of the HLA-G gene can affect the level of HLA-G expression, which may be altered in women with recurrent miscarriages (RM). This case-control study included 23 women with a medical history of three or more consecutive miscarriages who delivered a child after uncomplicated pregnancy, and 46 controls with uncomplicated pregnancy. Genomic DNA was isolated to sequence the 3&#8242;UTR of HLA-G. Tissue from term placentas was processed to quantify the HLA-G protein and mRNA levels. The women with a history of RM had a lower frequency of the HLA-G 3&#8242;UTR 14-bp del/del genotype as compared to controls (Odds ratio (OR) 0.28; p = 0.039), which has previously been related to higher soluble HLA-G levels. Yet, HLA-G protein (OR 6.67; p = 0.006) and mRNA (OR 6.33; p = 0.010) expression was increased in term placentas of women with a history of RM as compared to controls. In conclusion, during a successful pregnancy, HLA-G expression is elevated in term placentas from women with a history of RM as compared to controls, despite a genetic predisposition that is associated with decreased HLA-G levels. These findings suggest that HLA-G upregulation could be a compensatory mechanism in the occurrence of RM to achieve an ongoing pregnancy
    corecore