136 research outputs found

    Electric and magnetic dipole transitions to bound states in 206Pb

    Get PDF
    Nuclear resonance fluorescence measurements with linearly polarized bremsstrahlung were performed to determine parities of bound dipole transitions in 206Pb. A new 1+ level at 5800 keV was found, which has almost the same strength as the isoscalar M1 transition in 208Pb. Twenty-four further dipole states in 206Pb below 7.6 MeV possess negative parity

    Photoexcitation of low-lying dipole transitions in 236U

    Get PDF
    Nuclear resonance fluorescence experiments have been performed on the deformed actinide nucleus 236U. Bremsstrahlung of 3.9 MeV endpoint energy has been used as the photon source. The scattered photons were detected by three high resolution Ge- gamma -spectrometers installed at scattering angles of 92°, 128°, and 150°, respectively. Precise excitation energies, decay branching ratios, and ground state decay widths of numerous previously unknown spin 1 states in the excitation energy range 1.8-3.2 MeV have been extracted. The dipole strength has been found to be concentrated in the energy range 2.1-2.5 MeV. The systematics of the so-called scissors mode observed as a result of the previous ( gamma , gamma ') and (e,e') experiments on 232Th and 238U and, in particular, their combined analysis suggests likewise to attribute these new dipole excitations in 236U to the orbital M1 scissors mode

    Up-Regulation of the Human Serum and Glucocorticoid-Dependent Kinase 1 in Glomerulonephritis

    Get PDF
    Abstract Glomerulonephritis is paralleled by excessive formation of transforming growth factor-beta (TGF-ß), which participates in the pathophysiology of the disease. Recently, a novel downstream target of TGF-ß has been identified, i.e. the human serum and glucocorticoid-dependent kinase 1 (hSGK1), a serine/threonine kinase participating in the regulation of Na + transport. The present study was performed to elucidate transcriptional regulation of hSGK1 in glomerulonephritis. To this end, in situ hybridization was performed in biopsies from patients with clinical diagnosis of glomerulonephritis. hSGK1 transcript levels were moderately enhanced in 5 out of 9 patients and strongly enhanced in 4 out of 9 patients. Distal nephron epithelial cell hSGK1 transcript levels were low or absent in 7 of the 9 patients but markedly enhanced in 2 of the 9 patients. In conclusion, glomerulonephritis leads to glomerular and in some cases to epithelial up-regulation of hSGK1 transcription

    Pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV

    Get PDF
    We present a systematic analysis of two-pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV using the STAR detector at Relativistic Heavy Ion Collider. We extract the Hanbury-Brown and Twiss radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianness of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast-wave parametrizations. The expansion of the source and its relation with the initial energy density distribution is studied

    Azimuthally anisotropic emission of pions in symmetric heavy-ion collisions

    Get PDF
    Triple differential cross sections d3 sigma /dp3 for charged pions produced in symmetric heavy-ion collisions were measured with the KaoS magnetic spectrometer at the heavy-ion synchrotron facility SIS at GSI. The correlations between the momentum vectors of charged pions and the reaction plane in 197Au+197Au collisions at an incident energy of 1 GeV/nucleon were determined. We observe, for the first time, an azimuthally anisotropic distribution of pions, with enhanced emission perpendicular to the reaction plane. The anisotropy is most pronounced for pions of high transverse momentum in semicentral collisions

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Middle East - North Africa and the millennium development goals : implications for German development cooperation

    Get PDF
              Closed-loop controlled combustion is a promising technique to improve the overall performance of internal combustion engines and Diesel engines in particular. In order for this technique to be implemented some form of feedback from the combustion process is required. The feedback signal is processed and from it combustionrelated parameters are computed. These parameters are then fed to a control process which drives a series of outputs (e.g. injection timing in Diesel engines) to control their values. This paper’s focus lies on the processing and computation that is needed on the feedback signal before this is ready to be fed to the control process as well as on the electronics necessary to support it. A number of feedback alternatives are briefly discussed and for one of them, the in-cylinder pressure sensor, the CA50 (crank angle in which the integrated heat release curve reaches its 50% value) and the IMEP (Indicated Mean Effective Pressure) are identified as two potential control variables. The hardware architecture of a system capable of calculating both of them on-line is proposed and necessary feasibility size and speed considerations are made by implementing critical blocks in VHDL targeting a flash-based Actel ProASIC3 automotive-grade FPGA

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore