21 research outputs found

    Scrub Typhus with Acute Bilateral Cerebellar Ataxia: A Rare Presentation

    Get PDF
    Scrub typhus, also known as Bush typhus, is a zoonotic infectious disease predominantly affecting rural and semi urbanareas. It is caused by the bacterium Orientia tsutsugamushi. Scrub typhus is predominantly seen in monsoon and post-monsoonseasons. It a vector-borne disease and has a varying clinical presentation ranging from mild acute febrile illness to lifethreatening multiorgan dysfunction. Neurological manifestations can occur in the form of meningitis, meningoencephalitis,polyneuritis cranialis, intracerebral hemorrhage; rarely, it can cause cerebellar dysfunction. Herein, we report a case of acutebilateral cerebellar ataxia, one of the rare neurological complications of scrub typhus

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate

    11. Hepatoblastoma : A rare presentation in elderly.

    No full text
    Hepatoblastoma is one of most common types of liver cancer. However it is comparatively a rare variety of solid tumor in paediatric age. The disease usually affects children below the age of 3 years. Hepatoblastoma (HB) accounts for 79 % of all the liver tumors in children. Though it is usually seen in childhood, few cases of hepatoblastoma has also been reported in adults worldwide. Studies suggest the disease is more common in males as compared to females. The etiology of HB has not been yet fully understood. Alpha Feto Protein (AFP) is a sensitive and specific marker of the tumor for early diagnosis and monitoring. The complete surgical resection is the most important modality of treatment. Chemotherapy has been proven beneficial in both adjuvant and neo-adjuvant treatment. However inspite of all these available therapies, the prognosis of hepatoblastoma in adults is yet to be fully understood

    Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB during the LIGO–Virgo Observing Run O3a

    No full text

    Searches for gravitational waves from known pulsars at two harmonics in the second and third LIGO-Virgo observing runs

    Get PDF
    We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the l = 2, m = 1, 2 modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found, so we present 95% credible upper limits on the strain amplitudes h0 for the single-harmonic search along with limits on the pulsars' mass quadrupole moments Q22 and ellipticities ε. Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437−4715 and J0711−6830, which have spin-down ratios of 0.87 and 0.57, respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars, our limits are factors of ∼100 and ∼20 more constraining than their spin-down limits, respectively. For the dual-harmonic searches, new limits are placed on the strain amplitudes C21 and C22. For 23 pulsars, we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory

    Model-based Cross-correlation Search for Gravitational Waves from the Low-mass X-Ray Binary Scorpius X-1 in LIGO O3 Data

    Get PDF
    We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h0 of about 10−25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4 × 10−26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run

    No full text

    Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs

    No full text
    We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the l = 2, m = 1, 2 modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found, so we present 95% credible upper limits on the strain amplitudes h (0) for the single-harmonic search along with limits on the pulsars' mass quadrupole moments Q (22) and ellipticities epsilon. Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437-4715 and J0711-6830, which have spin-down ratios of 0.87 and 0.57, respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars, our limits are factors of similar to 100 and similar to 20 more constraining than their spin-down limits, respectively. For the dual-harmonic searches, new limits are placed on the strain amplitudes C (21) and C (22). For 23 pulsars, we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory
    corecore