14 research outputs found

    Optical Variability of Eight FRII-type Quasars with 13 yr Photometric Light Curves

    Get PDF
    We characterize the optical variability properties of eight lobe-dominated radio quasars (QSOs): B2 0709+37, FBQS J095206.3+235245, PG 1004+130, [HB89] 1156+631, [HB89] 1425+267, [HB89] 1503+691, [HB89] 1721+343, and 4C +74.26, systematically monitored for a duration of 13 yr since 2009. The quasars are radio-loud objects with extended radio lobes that indicate their orientation close to the sky plane. Five of the eight QSOs are classified as giant radio quasars. All quasars showed variability during our monitoring, with magnitude variations between 0.3 and 1 mag for the least variable and the most variable QSOs, respectively. We performed both structure function (SF) analysis and power spectral density (PSD) analysis for the variability characterization and search for characteristic timescales and periodicities. As a result of our analysis, we obtained relatively steep SF slopes (α ranging from 0.49 to 0.75) that are consistent with the derived PSD slopes (~2-3). All the PSDs show a good fit to single power-law forms, indicating a red-noise character of variability between timescales of ~13 yr and weeks. We did not measure reliable characteristic timescales of variability from the SF analysis, which indicates that the duration of the gathered data is too short to reveal them. The absence of bends in the PSDs (change of slope from ≥1 to ~0) on longer timescales indicates that optical variations are most likely caused by thermal instabilities in the accretion disk

    Multiwavelength variability of the radio quasar J2042+7508

    Get PDF
    In this paper, we present our results of study on the long term multiwavelength variability properties of the quasar J2042+7508 (4C +74.26) – a giant radio source located at the redshift of 0.104. This source exhibits interesting emission and structural properties when observed in various wavelengths, including X-ray, optical and radio frequencies. Therefore, exploring these properties through multifrequency variability studies presents a great importance to our understanding of the evolution of quasars and radio-loud unification schemes. We found a trend of anticorrelation with time lag of about three months between optical and radio light curves. A weak correlation with a longer time lag of about 230 days might also exist. Using the structure function method, applied to our six years long, optical data, we arrived at a conclusion that the quasar variability with amplitude of about 0.3 magnitude, is likely caused by an accretion disk instability

    Optical variability of eight FRII-type quasars with 13-yr photometric light curves

    Get PDF
    We characterize the optical variability properties of eight lobe-dominated radio quasars (QSOs): B2 0709++37, FBQS J095206.3++235245, PG 1004++130, [HB89] 1156++631, [HB89] 1425++267, [HB89] 1503++691, [HB89] 1721++343, 4C ++74.26, systematically monitored for a duration of 13 years since 2009. The quasars are radio-loud objects with extended radio lobes that indicate their orientation close to the sky plane. Five of the eight QSOs are classified as giant radio quasars. All quasars showed variability during our monitoring, with magnitude variations between 0.3 and 1 mag for the least variable and the most variable QSO, respectively. We performed both structure function (SF) analysis and power spectrum density (PSD) analysis for the variability characterization and search for characteristic timescales and periodicities. As a result of our analysis, we obtained relatively steep SF slopes (α\alpha ranging from 0.49 to 0.75) that are consistent with the derived PSD slopes (\sim2--3). All the PSDs show a good fit to single power law forms, indicating a red-noise character of variability between \sim13 years and weeks timescales. We did not measure reliable characteristic timescales of variability from the SF analysis which indicates that the duration of the gathered data is too short to reveal them. The absence of bends in the PSDs (change of slope from \geq1 to \sim0) on longer timescales indicates that optical variations are most likely caused by thermal instabilities in the accretion disk.Comment: Accepted for publication in ApJS; 17 pages, 5 figures, 5 table

    Optical variability of eight FRII-type quasars with 13 yr photometric light curves

    Get PDF
    We characterize the optical variability properties of eight lobe-dominated radio quasars (QSOs): B2 0709+37, FBQS J095206.3+235245, PG 1004+130, [HB89] 1156+631, [HB89] 1425+267, [HB89] 1503+691, [HB89] 1721+343, and 4C +74.26, systematically monitored for a duration of 13 yr since 2009. The quasars are radio-loud objects with extended radio lobes that indicate their orientation close to the sky plane. Five of the eight QSOs are classified as giant radio quasars. All quasars showed variability during our monitoring, with magnitude variations between 0.3 and 1 mag for the least variable and the most variable QSOs, respectively. We performed both structure function (SF) analysis and power spectral density (PSD) analysis for the variability characterization and search for characteristic timescales and periodicities. As a result of our analysis, we obtained relatively steep SF slopes (α ranging from 0.49 to 0.75) that are consistent with the derived PSD slopes (∼2–3). All the PSDs show a good fit to single power-law forms, indicating a red-noise character of variability between timescales of ∼13 yr and weeks. We did not measure reliable characteristic timescales of variability from the SF analysis, which indicates that the duration of the gathered data is too short to reveal them. The absence of bends in the PSDs (change of slope from ≥1 to ∼0) on longer timescales indicates that optical variations are most likely caused by thermal instabilities in the accretion disk

    Insights into the inner regions of the FU Orionis disc

    Get PDF
    Published version.Context. We investigate small-amplitude light variations in FU Ori occurring in timescales of days and weeks. Aims. We seek to determine the mechanisms that lead to these light changes. Methods. The visual light curve of FU Ori gathered by the MOST satellite continuously for 55 d in the 2013–2014 winter season and simultaneously obtained ground-based multi-colour data were compared with the results from a disc and star light synthesis model. Results. Hotspots on the star are not responsible for the majority of observed light variations. Instead, we found that the long periodic family of 10.5–11.4 d (presumably) quasi-periods showing light variations up to 0.07 mag may arise owing to the rotational revolution of disc inhomogeneities located between 16 and 20 R⊙. The same distance is obtained by assuming that these light variations arise because of a purely Keplerian revolution of these inhomogeneities for a stellar mass of 0.7 M⊙. The short-periodic (∼3 – 1.38 d) small amplitude (∼0.01 mag) light variations show a clear sign of period shortening, similar to what was discovered in the first MOST observations of FU Ori. Our data indicate that these short-periodic oscillations may arise because of changing visibility of plasma tongues (not included in our model), revolving in the magnetospheric gap and/or likely related hotspots as well. Conclusions. Results obtained for the long-periodic 10–11 d family of light variations appear to be roughly in line with the colour-period relation, which assumes that longer periods are produced by more external and cooler parts of the disc. Coordinated observations in a broad spectral range are still necessary to fully understand the nature of the short-periodic 1–3 d family of light variations and their period changes

    A Multi-Epoch, Multiwavelength Study of the Classical FUor V1515 Cyg Approaching Quiescence

    Get PDF
    Historically, FU Orionis-type stars are low-mass, pre-main-sequence stars. The members of this class experience powerful accretion outbursts and remain in an enhanced accretion state for decades or centuries. V1515 Cyg, a classical FUor, started brightening in the 1940s and reached its peak brightness in the late 1970s. Following a sudden decrease in brightness, it stayed in a minimum state for a few months, then started brightening for several years. We present the results of our ground-based photometric monitoring complemented with optical/near-infrared spectroscopic monitoring. Our light curves show a long-term fading with strong variability on weekly and monthly timescales. The optical spectra show P Cygni profiles and broad blueshifted absorption lines, common properties of FUors. However, V1515 Cyg lacks the P Cygni profile in the Ca II 8498 Å line, a part of the Ca infrared triplet, formed by an outflowing wind, suggesting that the absorbing gas in the wind is optically thin. The newly obtained near-infrared spectrum shows the strengthening of the CO bandhead and the FeH molecular band, indicating that the disk has become cooler since the last spectroscopic observation in 2015. The current luminosity of the accretion disk dropped from the peak value of 138 L ⊙ to about 45 L ⊙, suggesting that the long-term fading is also partly caused by the dropping of the accretion rate

    Apophis planetary defense campaign

    Get PDF
    We describe results of a planetary defense exercise conducted during the close approach to Earth by the near-Earth asteroid (99942) Apophis during 2020 December–2021 March. The planetary defense community has been conducting observational campaigns since 2017 to test the operational readiness of the global planetary defense capabilities. These community-led global exercises were carried out with the support of NASA's Planetary Defense Coordination Office and the International Asteroid Warning Network. The Apophis campaign is the third in our series of planetary defense exercises. The goal of this campaign was to recover, track, and characterize Apophis as a potential impactor to exercise the planetary defense system including observations, hypothetical risk assessment and risk prediction, and hazard communication. Based on the campaign results, we present lessons learned about our ability to observe and model a potential impactor. Data products derived from astrometric observations were available for inclusion in our risk assessment model almost immediately, allowing real-time updates to the impact probability calculation and possible impact locations. An early NEOWISE diameter measurement provided a significant improvement in the uncertainty on the range of hypothetical impact outcomes. The availability of different characterization methods such as photometry, spectroscopy, and radar provided robustness to our ability to assess the potential impact risk
    corecore