115 research outputs found

    Predicting gene ontology from a global meta-analysis of 1-color microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global meta-analysis (GMA) of microarray data to identify genes with highly similar co-expression profiles is emerging as an accurate method to predict gene function and phenotype, even in the absence of published data on the gene(s) being analyzed. With a third of human genes still uncharacterized, this approach is a promising way to direct experiments and rapidly understand the biological roles of genes. To predict function for genes of interest, GMA relies on a guilt-by-association approach to identify sets of genes with known functions that are consistently co-expressed with it across different experimental conditions, suggesting coordinated regulation for a specific biological purpose. Our goal here is to define how sample, dataset size and ranking parameters affect prediction performance.</p> <p>Results</p> <p>13,000 human 1-color microarrays were downloaded from GEO for GMA analysis. Prediction performance was benchmarked by calculating the distance within the Gene Ontology (GO) tree between predicted function and annotated function for sets of 100 randomly selected genes. We find the number of new predicted functions rises as more datasets are added, but begins to saturate at a sample size of approximately 2,000 experiments. For the gene set used to predict function, we find precision to be higher with smaller set sizes, yet with correspondingly poor recall and, as set size is increased, recall and F-measure also tend to increase but at the cost of precision.</p> <p>Conclusions</p> <p>Of the 20,813 genes expressed in 50 or more experiments, at least one predicted GO category was found for 72.5% of them. Of the 5,720 genes without GO annotation, 4,189 had at least one predicted ontology using top 40 co-expressed genes for prediction analysis. For the remaining 1,531 genes without GO predictions or annotations, ~17% (257 genes) had sufficient co-expression data yet no statistically significantly overrepresented ontologies, suggesting their regulation may be more complex.</p

    Slowly developing depression of N-methyl-D-aspartate receptor mediated responses in young rat hippocampi

    Get PDF
    BACKGROUND: Activation of N-methyl-D-aspartate (NMDA) type glutamate receptors is essential in triggering various forms of synaptic plasticity. A critical issue is to what extent such plasticity involves persistent changes of glutamate receptor subtypes and many prior studies have suggested a main role for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in mediating the effect. Our previous work in hippocampal slices revealed that, under pharmacological unblocking of NMDA receptors, both AMPA and NMDA receptor mediated responses undergo a slowly developing depression. In the present study we have further adressed this phenomenon, focusing on the contribution via NMDA receptors. Pharmacologically isolated NMDA receptor mediated excitatory postsynaptic potentials (EPSPs) were recorded for two independent synaptic pathways in CA1 area using perfusion with low Mg(2+ )(0.1 mM) to unblock NMDA receptors. RESULTS: Following unblocking of NMDA receptors, there was a gradual decline of NMDA receptor mediated EPSPs for 2–3 hours towards a stable level of ca. 60–70 % of the maximal size. If such an experimental session was repeated twice in the same pathway with a period of NMDA receptor blockade in between, the depression attained in the first session was still evident in the second one and no further decay occurred. The persistency of the depression was also validated by comparison between pathways. It was found that the responses of a control pathway, unstimulated in the first session of receptor unblocking, behaved as novel responses when tested in association with the depressed pathway under the second session. In similar experiments, but with AP5 present during the first session, there was no subsequent difference between NMDA EPSPs. CONCLUSIONS: Our findings show that merely evoking NMDA receptor mediated responses results in a depression which is input specific, induced via NMDA receptor activation, and is maintained for several hours through periods of receptor blockade. The similarity to key features of long-term depression and long-term potentiation suggests a possible relation to these phenomena. Additionally, a short term potentiation and decay (<5 min) were observed during sudden start of NMDA receptor activation supporting the idea that NMDA receptor mediated responses are highly plastic

    Systematic classification of non-coding RNAs by epigenomic similarity

    Get PDF
    BACKGROUND: Even though only 1.5% of the human genome is translated into proteins, recent reports indicate that most of it is transcribed into non-coding RNAs (ncRNAs), which are becoming the subject of increased scientific interest. We hypothesized that examining how different classes of ncRNAs co-localized with annotated epigenomic elements could help understand the functions, regulatory mechanisms, and relationships among ncRNA families. RESULTS: We examined 15 different ncRNA classes for statistically significant genomic co-localizations with cell type-specific chromatin segmentation states, transcription factor binding sites (TFBSs), and histone modification marks using GenomeRunner (http://www.genomerunner.org). P-values were obtained using a Chi-square test and corrected for multiple testing using the Benjamini-Hochberg procedure. We clustered and visualized the ncRNA classes by the strength of their statistical enrichments and depletions. We found piwi-interacting RNAs (piRNAs) to be depleted in regions containing activating histone modification marks, such as H3K4 mono-, di- and trimethylation, H3K27 acetylation, as well as certain TFBSs. piRNAs were further depleted in active promoters, weak transcription, and transcription elongation regions, and enriched in repressed and heterochromatic regions. Conversely, transfer RNAs (tRNAs) were depleted in heterochromatin regions and strongly enriched in regions containing activating H3K4 di- and trimethylation marks, H2az histone variant, and a variety of TFBSs. Interestingly, regions containing CTCF insulator protein binding sites were associated with tRNAs. tRNAs were also enriched in the active, weak and poised promoters and, surprisingly, in regions with repetitive/copy number variations. CONCLUSIONS: Searching for statistically significant associations between ncRNA classes and epigenomic elements permits detection of potential functional and/or regulatory relationships among ncRNA classes, and suggests cell type-specific biological roles of ncRNAs

    The cell cycle regulatory DREAM complex is disrupted by high expression of oncogenic B-Myb.

    Get PDF
    Overexpression of the oncogene MYBL2 (B-Myb) is associated with increased cell proliferation and serves as a marker of poor prognosis in cancer. However, the mechanism by which B-Myb alters the cell cycle is not fully understood. In proliferating cells, B-Myb interacts with the MuvB core complex including LIN9, LIN37, LIN52, RBBP4, and LIN54, forming the MMB (Myb-MuvB) complex, and promotes transcription of genes required for mitosis. Alternatively, the MuvB core interacts with Rb-like protein p130 and E2F4-DP1 to form the DREAM complex that mediates global repression of cell cycle genes in G0/G1, including a subset of MMB target genes. Here, we show that overexpression of B-Myb disrupts the DREAM complex in human cells, and this activity depends on the intact MuvB-binding domain in B-Myb. Furthermore, we found that B-Myb regulates the protein expression levels of the MuvB core subunit LIN52, a key adapter for assembly of both the DREAM and MMB complexes, by a mechanism that requires S28 phosphorylation site in LIN52. Given that high expression of B-Myb correlates with global loss of repression of DREAM target genes in breast and ovarian cancer, our findings offer mechanistic insights for aggressiveness of cancers with MYBL2 amplification, and establish the rationale for targeting B-Myb to restore cell cycle control

    From microarray to biology: an integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells

    Get PDF
    A statistically robust and biologically-based approach for analysis of microarray data is described that integrates independent biological knowledge and data with a global F-test for finding genes of interest that minimizes the need for replicates when used for hypothesis generation. First, each microarray is normalized to its noise level around zero. The microarray dataset is then globally adjusted by robust linear regression. Second, genes of interest that capture significant responses to experimental conditions are selected by finding those that express significantly higher variance than those expressing only technical variability. Clustering expression data and identifying expression-independent properties of genes of interest including upstream transcriptional regulatory elements (TREs), ontologies and networks or pathways organizes the data into a biologically meaningful system. We demonstrate that when the number of genes of interest is inconveniently large, identifying a subset of "beacon genes" representing the largest changes will identify pathways or networks altered by biological manipulation. The entire dataset is then used to complete the picture outlined by the "beacon genes." This allow construction of a structured model of a system that can generate biologically testable hypotheses. We illustrate this approach by comparing cells cultured on plastic or an extracellular matrix which organizes a dataset of over 2,000 genes of interest from a genome wide scan of transcription. The resulting model was confirmed by comparing the predicted pattern of TREs with experimental determination of active transcription factors

    A Comprehensive and Universal Method for Assessing the Performance of Differential Gene Expression Analyses

    Get PDF
    The number of methods for pre-processing and analysis of gene expression data continues to increase, often making it difficult to select the most appropriate approach. We present a simple procedure for comparative estimation of a variety of methods for microarray data pre-processing and analysis. Our approach is based on the use of real microarray data in which controlled fold changes are introduced into 20% of the data to provide a metric for comparison with the unmodified data. The data modifications can be easily applied to raw data measured with any technological platform and retains all the complex structures and statistical characteristics of the real-world data. The power of the method is illustrated by its application to the quantitative comparison of different methods of normalization and analysis of microarray data. Our results demonstrate that the method of controlled modifications of real experimental data provides a simple tool for assessing the performance of data preprocessing and analysis methods

    PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity

    Get PDF
    Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP+ cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism

    Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-α and NF-κb are key components of the innate immune response to the pathogen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bacillus anthracis</it>, the etiologic agent of anthrax, has recently been used as an agent of bioterrorism. The innate immune system initially appears to contain the pathogen at the site of entry. Because the human alveolar macrophage (HAM) plays a key role in lung innate immune responses, studying the HAM response to <it>B. anthracis </it>is important in understanding the pathogenesis of the pulmonary form of this disease.</p> <p>Methods</p> <p>In this paper, the transcriptional profile of <it>B. anthracis </it>spore-treated HAM was compared with that of mock-infected cells, and differentially expressed genes were identified by Affymetrix microarray analysis. A portion of the results were verified by Luminex protein analysis.</p> <p>Results</p> <p>The majority of genes modulated by spores were upregulated, and a lesser number were downregulated. The differentially expressed genes were subjected to Ingenuity Pathway analysis, the Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis, the Promoter Analysis and Interaction Network Toolset (PAINT) and Oncomine analysis. Among the upregulated genes, we identified a group of chemokine ligand, apoptosis, and, interestingly, keratin filament genes. Central hubs regulating the activated genes were TNF-α, NF-κB and their ligands/receptors. In addition to TNF-α, a broad range of cytokines was induced, and this was confirmed at the level of translation by Luminex multiplex protein analysis. PAINT analysis revealed that many of the genes affected by spores contain the binding site for c-Rel, a member of the NF-κB family of transcription factors. Other transcription regulatory elements contained in many of the upregulated genes were c-Myb, CP2, Barbie Box, E2F and CRE-BP1. However, many of the genes are poorly annotated, indicating that they represent novel functions. Four of the genes most highly regulated by spores have only previously been associated with head and neck and lung carcinomas.</p> <p>Conclusion</p> <p>The results demonstrate not only that TNF-α and NF-κb are key components of the innate immune response to the pathogen, but also that a large part of the mechanisms by which the alveolar macrophage responds to <it>B. anthracis </it>are still unknown as many of the genes involved are poorly annotated.</p
    • …
    corecore