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PDGFRα signaling drives adipose tissue
fibrosis by targeting progenitor cell
plasticity
Tomoaki Iwayama,1 Cameron Steele,1 Longbiao Yao,1Mikhail G.Dozmorov,2,3 Dimitris Karamichos,4,5

Jonathan D. Wren,2 and Lorin E. Olson1,4

1Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104,
USA; 2Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City,
Oklahoma 73104, USA; 3Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia 23298, USA;
4Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA;
5Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City,
Oklahoma 73104, USA

Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized
extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dys-
function, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to in-
vestigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a
Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP
specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition
into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR sig-
naling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes
that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP+ cells differentiate into adi-
pocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adi-
pogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These
results identify perivascular cells as fibro/adipogenic progenitors inWAT and show that PDGFRα targets progenitor
cell plasticity as a profibrotic mechanism.

[Keywords: platelet-derived growth factor; fibrosis; adipogenesis; Nestin; pericyte; imprinting]
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Vascular smooth muscle cells and pericytes are classified
as mural cells. While vascular smooth muscle cells occur
in layers around arteries and veins, pericytes reside
directly on the abluminal surface of capillaries (Armulik
et al. 2011). Perivascular adventitial cells form the outer-
most layer around larger vessels (Majesky et al. 2011).
Pericytes and adventitial cells have been implicated as
an adult reservoir of progenitor cells with the potential
to generate adipocytes, osteoblasts, and other mesenchy-
mal cell types (Crisan et al. 2008; Hoshino et al. 2008;
Passman et al. 2008; Mendez-Ferrer et al. 2010; Corselli
et al. 2012). Lineage tracing and cell ablation studies
strongly suggest that tissue injury can induce pericytes
or pericyte-like cells in diverse organs to leave their peri-
vascular niche and differentiate into profibrotic cells
(Humphreys et al. 2010; Goritz et al. 2011; Rock et al.

2011; Dulauroy et al. 2012; Soderblom et al. 2013; Kra-
mann et al. 2015). Sometimes calledmyofibroblasts, these
profibrotic cells secrete extracellular matrix (ECM) and
are the main effector cells of organ fibrosis (Tomasek
et al. 2002; Hinz et al. 2007).

Fibrosis is a disease process involving the destruction of
normal tissue by deposition of collagen-rich ECM. This is
a serious medical problem because every organ can be
damaged by fibrosis, and, in severe cases, it may lead to or-
gan failure. Unfortunately, in the majority of fibrotic
diseases, there is no specific treatment to mitigate or re-
verse the destructive tissue remodeling. The generally ac-
ceptedmodel of fibrosis posits that sustained injury to the
organ parenchymacauses inflammation and production of
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cytokines and growth factors that recruit immune cells
and profibrotic cells to the injured site. In fibrotic disease,
the normal repair processes fail to resolve, and ECM-pro-
ducing cells persist, creating scar tissue and impairing or-
gan function (Wynn and Ramalingam 2012; Friedman
et al. 2013). Transforming growth factor β (TGF-β) induces
profibrotic cells with contractile properties (i.e., myofibro-
blasts) and is often considered the predominant profibrotic
signal. However, platelet-derived growth factor (PDGF) is
another important profibrotic signal that binds the recep-
tor tyrosine kinases PDGFRα and PDGFRβ (Bonner 2004;
Andrae et al. 2008). Multiple studies have shown that
PDGF signaling is needed for fibrosis: Chemical inhibitors
of PDGFRα/β tyrosine kinase activity can reduce fibrosis
in animal models of skin and lung fibrosis, blocking anti-
bodies against PDGFRα/β reduce kidney and atrial fibrosis
in mice, and PDGFRα heterozygous mice are resistant to
hepatic fibrosis (Abdollahi et al. 2005; Akhmetshina
et al. 2009; Liao et al. 2010; Chen et al. 2011; Hayes et al.
2014). Furthermore, increased PDGF signaling via trans-
genic expression of PDGF ligands (Ponten et al. 2003) or
conditional activation of a PDGFRα gain-of-function mu-
tation (Olson and Soriano 2009) is sufficient to cause fibro-
sis. However, the cells targeted by profibrotic PDGF
signaling have not been characterized.
Previously, we explored the role of PDGFRα signaling

in organ fibrosis using R26-CreER; PDGFRα+/D842V mice.
In this model, a Cre/lox-inducible gain-of-function
knock-in mutation (D842V) in PDGFRα increased recep-
tor tyrosine kinase activity. This knock-in was targeted
to the endogenous Pdgfrα gene, and therefore Cre-induced
expression of the activated receptor recapitulated the
natural Pdgfrα expression pattern. Activation of
PDGFRαD842V with R26-CreER caused progressive fibro-
sis in many organs, including the skin (affecting dermal
adipose tissue), gastrointestinal tract, skeletal muscle,
heart, kidneys, and lungs (Olson and Soriano 2009).
Because this occurred after a single pulse of tamoxifen giv-
en in late embryogenesis or adulthood, activation of the
PDGFRα pathway in some adult cells must be sufficient
to generate significant profibrotic activity. Interestingly,
activation of a PDGFRβD849V gain-of-function mutation
did not cause fibrosis (Olson and Soriano 2011; T Iwayama
and LEOlson, unpubl.), which suggests that PDGFRαmay
be uniquely poised to promote the emergence of profi-
brotic cells. However, because the R26-driven Cre exhib-
its global activity, more specific Cre drivers were needed
to develop detailed information about the cellular targets
of profibrotic PDGFRα signaling.
White adipose tissue (WAT) fibrosis is significant

because of its intimate relationship with WAT dysfunc-
tion, chronic inflammation, and insulin resistance in hu-
mans and mice (Khan et al. 2009; Pasarica et al. 2009;
Divoux et al. 2010; Sun et al. 2013; Vila et al. 2014). To in-
vestigate pericytes and adventitial cells in WAT and their
potential to become profibrotic cells, we evaluated the ef-
fects of conditional activation of PDGFRαD842V in perivas-
cular cells, whether the resulting ECM-producing cells
arose from perivascular cells, and the fibro/adipogenic
cell fate potential of WAT pericyte-like cells that are

marked by the Nestin-GFP reporter. Our lineage tracing
experiments showed that Nestin-Cre1Kln targets peri-
cyte-like cells and adventitial cells inWAT,while theNes-
tin-GFP reporter specifically labels pericyte-like cells.
Activation of PDGFRαD842V with Nestin-Cre results in fi-
brosis bycausingperivascularcells to transition intoECM-
producing cells. Whole-genome RNA sequencing (RNA-
seq) ofNestin-GFP+cells identifiedgene signaturessugges-
tive of progenitor cell status and increased mTOR signal-
ing and ribosome biogenesis functions in response to
PDGFRαD842V. Isolated Nestin-GFP+ cells have adipocyte
progenitor cell surface markers and differentiate into adi-
pocytes ex vivo. However, PDGFRα signaling opposes adi-
pogenesis and generates profibrotic cells ex vivo or when
PDGFRαD842V cells are transplanted into recipient mice.
Therefore, Nestin-GFP+ PDGFRα+ cells are progenitor
cells with the potential to become adipocytes or profi-
brotic cells, and PDGFRα activation causes fibrosis cell-
autonomously by perturbation of progenitor function.

Results

An approach for activating PDGFRα in perivascular cells

We sought Cre drivers predicted to be active in perivascu-
lar cells to test whether these cells give rise to profibrotic
cells in response to PDGFRα signaling. Chondroitin sul-
fate proteoglycan 4 (Cspg4/NG2) and PDGFRβ are typical
pericyte markers. However, mature adipocytes express
Cspg4 (Chang et al. 2012), and PDGFRβ-Cre was shown
to have broad activity in WAT (Tang et al. 2008). There-
fore, these drivers are not useful for precise lineage tracing
in WAT. Indeed, when we tested Cspg4-Cre (Zhu et al.
2008) and PDGFRβ-Cre (Foo et al. 2006) BAC transgenic
mice by crossing with the R26-Tomato reporter line, we
found abundant labeling outside the perivascular com-
partment (Supplemental Fig. 1).
Nestin (Nes) has been used as a pericyte marker, and

Nes-GFP has served as a useful transgenic reporter to label
subsets of pericyte-like cells that display somatic stem/
progenitor cell properties (Dore-Duffy et al. 2006; Men-
dez-Ferrer et al. 2010), but expression in WAT has not
been examined. Therefore, we crossed Nes-GFP (Mignone
et al. 2004) andNes-Cre1Kln (Tronche et al. 1999) transgen-
ic mice to generate double-transgenic mice with Cre and
GFP driven by the promoter and first intron of the rat nes-
tin gene (Zimmerman et al. 1994). We also introduced the
R26-Tomato Cre-dependent reporter, resulting in triple-
transgenic Nes-GFP; Nes-Cre; R26-Tomato mice (Fig.
1A). There were two distinct types of Tomato+ cells in
theWATof 3-wk-oldmice. First, therewere individual To-
mato+ cells closely associated with capillaries with a peri-
cyte-like morphology (Fig. 1B,C,E). Second, there were
clustered Tomato+ cells around arterioles and venules
but separated from the endothelium by a layer of vascular
smoothmuscle cells, indicating that theywere adventitial
cells (Fig. 1D, arrow). Interestingly, Tomato+ adventitial
cells were not colabeled by Nes-GFP, but the pericyte-
like cells were consistently colabeled with both report-
ers (Fig. 1D–I). The Tomato+GFP+ pericyte-like cells
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expressed PDGFRβ andCspg4 (Fig. 1F,G) andwere embed-
ded in the capillary basement membrane (Fig. 1H), further
suggestive of a pericyte identity. Fluorescent Toma-
to+GFP+ pericyte-like cells were seen on the abluminal
surface of capillaries isolated from WAT by anti-CD31-
coated magnetic beads (Supplemental Fig. 2). Toma-
to+GFP+ pericyte-like cells and Tomato+ adventitial cells
also expressed PDGFRα (Fig. 1I). We conclude that the
Nes-GFP reporter is active in PDGFRα+ pericytes or peri-
cyte-like cells, while the cells targeted byNes-Cre include
pericyte-like cells and adventitial cells (together called
perivascular cells). This difference is explained by the
fact thatNes-GFP is restricted to cells where the transgen-
ic nestin promoter is active, while Nes-Cre/Tomato is a
lineage reporter that indelibly labels a larger population,
including nestin-expressing cells and their progeny. These

results show that Nes-driven transgenes are aligned with
our primary goal of targeting perivascular cells in WAT.

We also used flow cytometry as an independent ap-
proach to characterize and quantify the specificity of the
Nes-Cre/Tomato and Nes-GFP reporters in the stromal
vascular fraction (SVF) of WAT. In the subcutaneous and
visceral WAT, between 20% and 35% of the whole SVF
was labeled with either reporter. Between 20% and 45%
of the PDGFRα+ population was Tomato/GFP+, but a
very low percentage (1%–5%) of the CD31+ and CD45+

populations was labeled (Supplemental Fig. 3). These
data show that Nes-driven transgenes are specific for a
subset ofmesenchymal cells in the SVF and haveminimal
expression in endothelial and hematopoietic cells. We
also found that a large fraction of the adipocyte precursor
population in the SVFwas Tomato/GFP+ (Rodeheffer et al.

Figure 1. Nestin-Cre andNestin-GFP identify perivascular cells inWAT. (A) Schematic of the genetic tools inNes-GFP;Nes-Cre; R26-To-
mato dual-reportermice used in this figure.GFPandCre are expressed fromdistinctnestin-driven transgenes.Cre acts on aCre/lox-depen-
dentR26 knock-in fluorescent Tomato reporter, which serves as a lineage trace. (B) Epifluorescence of Nes-Cre/Tomato lineage tracing in
visceralWAT, imagedbywhole-mountwith isolectin-IB4 staining for capillaryendothelial cells. (C )Measurement of the distance between
DAPI+nucleiof individualNes-GFP+cells (n = 167)andthenearest IB4+capillarymembrane,as shownintheexampleatthe right.Adistance
<10 µmmeans the cell is on the abluminal surface of the capillary. (D) Epifluorescence of Nes-GFP andNes-Cre/Tomato plus immunoflu-
orescencestainingofMyh11 invascular smoothmusclecells.TheGFP/Tomato reporters arecoexpressed inpericyte-likecells (arrowhead).
Tomato also identifies adventitial cells inwhichNes-GFP is not expressed (arrow). (E–I ) Epifluorescence ofNes-GFP andNes-Cre/Tomato
plus IB4 labeling forendothelial cells (E), immunofluorescence stainingofCspg4orPDGFRβ for pericytes (F,G), immunofluorescence stain-
ing of collagen IV for basementmembrane (H), and immunofluorescence staining of PDGFRα (I ). (J) Epifluorescence of Nes-GFP andNes-
Cre/Tomato plus immunofluorescence staining of Perilipin (PLIN1) for adipocytes. Tomato identifies rare adipocytes (arrow) that do not
express Nes-GFP. A Tomato+GFP+ pericyte-like cell is also shown (arrowhead). Bars: B, 100 µm;D, 30 µm; E–I, 20 µm; J, 30 µm.
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2008). However, by fluorescent microscopy, <1% of the
mature adipocytes were Tomato+ in the WAT of 3-wk-
old mice, and none was GFP+ (Fig. 1J). This may indicate
that Nes-Cre/Tomato labels a subset of the adipocyte pre-
cursors that do not contribute to adipogenesis during the
juvenile period. Interestingly, the number of Tomato+ ad-
ipocytes in visceral WAT increased significantly when
mice were fed a high-fat diet (HFD), as described later
(Fig. 5, below).
Analysis of heart muscle, intestine, and spleen from

Nes-GFP; Nes-Cre; R26-Tomato mice showed that, as in
WAT, only perivascular cells were Tomato+ (data not
shown). Thus,Nes-Cre should be useful for precise lineage
tracing in these organs. In the kidneys, lungs, and skeletal
muscle, perivascular cells as well as many parenchymal
cells were Tomato+.

PDGFRα activation in perivascular cells is sufficient
for fibrosis

We generated Nes-Cre; PDGFRα+/D842V mutant mice to
test whether perivascular expression of activated
PDGFRαwould cause fibrosis (Fig. 2A). Histological anal-

ysis identified fibrosis in mutant WAT, beginning as peri-
vascular lesions at ∼12 wk and progressing to interstitial
fibrosis at later times (Fig. 2B,C). The tissue area contain-
ing extracellular collagen fibers was significantly in-
creased in mutants at 12- and 24-wk of age (Fig. 2C,D).
Col1a1 andCol3a1 expressionwerehigher in 24-wk-old fi-
brotic WAT compared with age-matched control WAT
(Fig. 2E). Cell proliferation was increased in mutant WAT
at 12-wk of age (Fig. 2F,G). These results demonstrate
that PDGFRα activation in perivascular cells, including
pericyte-like cells and/or adventitial cells, is sufficient to
cause WAT fibrosis. Nes-Cre; PDGFRα+/D842V mutants
also developed severe fibrosis of the intestinal submucosa
and skeletal muscle as well as perivascular-restricted fi-
brosis in the heart, lung, spleen, and kidney (Supplemental
Fig. 4). Collectively, these phenotypes demonstrate the
high fibrogenic potential of perivascular cells in response
to PDGFRα signaling.

Perivascular cells generate profibrotic cells cell-
autonomously

Perivascular cellsmight generate profibrotic cells directly,
or fibrosis might occur non-cell-autonomously; for

Figure 2. PDGFRα activation inperivascular cells is sufficient for fibrosis. (A) Schematic of the genetic tools inNes-Cre; PDGFRα+/[S]D842V

mutant mice used in this figure. Cre acts on the PDGFRαD842V knock-in allele to induce expression of an activated mutant PDGFRα. (B)
Masson’s trichrome staining for collagen (blue) in dermal and subcutaneous WAT. (C ) Picosirius red staining for collagen (orange) in sub-
cutaneousWAT. (D)Quantificationof a picosirius red-stainedarea as ameasure of fibrosis.n = 3–6miceper datapoint; (∗)P < 0.01. (E)Quan-
titative PCR (qPCR) analysis of collagen transcripts in subcutaneousWATat 24wkof age.n = 3;mean ± SEM; (∗)P < 0.05. (F ) DAPI staining
of cell nuclei and EdU labeling for proliferating cells in WAT at 12-wk of age. Arrows indicate EdU/DAPI double-positive nuclei. (G)
Flow cytometric quantification of EdU+ cells as a percentage of total cells sorted from subcutaneous WAT at 12 wk of age. n = 6; mean ±
SEM; (∗) P < 0.05. Bars: B, 120 µm; C, 120 µm.

PDGFRα and adipose tissue fibrosis

GENES & DEVELOPMENT 1109

 Cold Spring Harbor Laboratory Press on December 7, 2015 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


instance, by paracrine signaling to stimulate non-
perivascular cells to become profibrotic. To test for a
cell-autonomous mechanism, we crossed Nes-Cre;
PDGFRα+/D842V mutants with R26-Tomato reporter mice
to lineage trace perivascular cells during fibrosis. We also
used a Collagen1a1-GFP reporter (Magness et al. 2004) to
identifyprofibroticcells (Fig.3A). Incontrolmicewithout fi-
brosis, Tomato+ perivascular cells did not express Col-GFP
(Fig. 3B). In mutant mice at 28-wk of age, there was a dra-
matic increase in Col-GFP+ cells, which was mirrored by
an expansion of Tomato+ cells (Fig. 3B). Within fibrotic le-
sions, close to 100% of Tomato+ cells were Col-GFP+ (Fig.
3C,D). Furthermore, Col-GFP+ cellswere almost exclusive-
ly Tomato+, indicating that profibrotic cells were derived
from the perivascular lineage, including pericyte-like cells
and adventitial cells. Profibrotic cells were also PDGFRα+

(Fig.3E). Importantly,Nes-GFPwasnotexpressedinfibrotic
lesionsofNes-GFP;Nes-Cre;PDGFRα+/D842Vmutants (Sup-
plemental Fig. 5). This suggests that pericytes loseNes-GFP
expressionduringthetransitiontoprofibroticcells.Wetook
advantage of the selective Nes-GFP marker to isolate peri-
cyte-like cells for whole-transcriptome sequencing and
functional studies in vitro.

RNA-seq analysis of gene expression
in Nes-GFP+ cells

Weperformedgenome-wideRNA-seq tocharacterizeNes-
GFP+ cells at a transcriptional level and elucidate gene ex-

pression changes in PDGFRαD842V cells. We flow-sorted
Nes-GFP+ cells from Nes-GFP; Nes-Cre; PDGFRα+/D842V

mutantmice andNes-GFP;Nes-Cre controlmice. Because
our goal was to identify genomic signatures preceding fi-
brosis, we chose dermal adipose tissue from 3-d-old mice
as a tissue source. We confirmed the enrichment of peri-
cyte and mesenchymal markers on sorted Nes-GFP+ cells
by quantitative RT–PCR (qRT–PCR) for Pdgfrα, Pdgfrβ,
Rgs5, andAdam12 (SupplementalFig.6).Wethenprepared
cDNA libraries and performed RNA-seq to generate a list
of the top50mosthighlyexpressedgenes inNes-GFP+cells
(Supplemental Table 1). This list includedmany genes en-
coding ECM proteins (e.g., Col1a1, Col1a2, Col3a1, Fn1,
and Eln) and pericyte-enriched genes (e.g., Col4a1,
Col4a2,Fstl1,Ahnak, andBgn) (Bondjers et al. 2006;Zhang
et al. 2014).Also on the listwere five genes that are regulat-
ed by epigenetic imprinting mechanisms in mice: Dlk1,
H19, Igf2, Gnas, and Peg3. Imprinted genes are rare, esti-
mated at <1%ofmouse genes (Morison et al. 2005). There-
fore, five imprinted genes among the top 50 genes in Nes-
GFP+ cells was an unusually high proportion.

By global comparison of gene expression between con-
trol and PDGFRαD842V cells, we identified 1356 differen-
tially expressed genes (DEGs; P < 0.01) out of 37,992
genes scored. In general, the ECM genes were not DEGs,
which is consistent with analysis of cells in a prefibrotic
state. However, by checking a full list of ∼70 known im-
printed genes (Morison et al. 2005) against the DEGs, we
discovered that there were 15 up-regulated imprinted

Figure 3. Profibrotic cells originate from perivascular cells. (A) Schematic of the genetic tools inNes-Cre; PDGFRα+/[S]D842V; R26-Toma-
to; Col-GFPmutant double-reportermice used in this figure. Cre acts on the PDGFRαD842V knock-in allele and an R26-Tomato reporter to
induce expression of an activated mutant PDGFRα and lineage trace perivascular cells. GFP is expressed from a distinct Col1a1-driven
transgene. (B, left panels) Epifluorescence of Nes-Cre/Tomato and Col-GFP plus isolectin-IB4 staining of endothelial cells in nonfibrotic
subcutaneous or visceralWAT. (Middle panels) Epifluorescence of Nes-Cre/Tomato plus isolectin-IB4 in fibroticWAT. (Right panels) Epi-
fluorescence of Col-GFP for identification of ECM-producing cells in the same tissue. The large increase in Tomato+ area inNestin-D842V
samples is mirrored by Col-GFP area. (C ) Epifluorescence of Nestin-Cre/Tomato colocalized with Col-GFP in a fibrotic lesion of subcuta-
neousWAT. (D) Quantification of the proportion of Col-GFP-labeled cells coexpressingNestin-Cre/Tomato and the proportion of Nestin-
Cre/Tomato-labeled cells coexpressing Col-GFP. n = 3; mean ± SEM. (E) Immunofluorescence staining of PDGFRα colocalized with epi-
fluorescence of Nes-Cre/Tomato. Bars: B, 100 µm; C,E, 50 µm.
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genes and two down-regulated imprinted genes (Fig. 4A).
Among 1356 DEGs, the occurrence of 17 imprinted genes
is significantly more than would be expected by chance
(P < 0.0001, χ2 test). Interestingly, Dlk1, H19, Igf2, and
Peg3 are part of the “imprinted gene network” (IGN),
which includes 11 monoallelically expressed genes that
are down-regulated inmost tissues postnatally but remain
highly expressed in many somatic stem and progenitor
cells (Varrault et al. 2006; Lui et al. 2008; Berg et al.

2011; Besson et al. 2011). In our experiment, seven IGN
genes were overexpressed in PDGFRαD842V cells: Dlk1,
H19, Igf2, Plagl1, Mest, Cdkn1c, and Slc38a4 (Fig. 4A).
By in situ hybridization (ISH) with antisense RNA probes,
increased expression of Dlk1, H19, and Igf2 was apparent
in adventitial cells of Nes-Cre; PDGFRαD842V subcutane-
ous WAT (Fig. 4B, arrowheads). Scattered cells with a
high ISH signal were also seen in both control andmutant
samples, consistent with expression of Dlk1, H19, and

Figure 4. PDGFRα signaling perturbs imprinted gene expression and mTOR/mRNA translation pathways. (A) RNA-seq analysis of dif-
ferentially expressed imprinted genes. P-values are indicated. Bold genes are part of the IGN. (B) ISH for H19, Dlk1, and Igf2 mRNA in
subcutaneous WAT of 4-d-old mice. The blue stain identifies intense gene expression in adventitial cells (arrowheads) in PDGFRαD842V

tissue. Scattered pericyte-like cells also showexpression in both samples (arrows). (C ) Differentially expressed pathways inNes-GFP+ cells
of wild-type or PDGFRαD842Vmice, identified by Ingenuity PathwayAnalysis of the RNA-seq data. “Canonical pathways” are defined by a
cluster of related signature genes, which constitutes the ratio’s denominator. The numerator is the number of signature genes that were
changed with P < 0.01 in the RNA-seq data set. P-value is the probability that the ratio occurred by chance. (D,E) Heat map of six mTOR
pathway signature genes that were differentially expressed and a model representing the PI3K/Akt/mTOR pathway with functional asso-
ciation of the six DEGs. (F ) Heat map of 61 genes encoding ribosomal proteins that were differentially expressed and represented as sig-
nature genes in the EIF2, mTOR, and EIF4/p70S6K canonical pathways.
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Igf2 in pericytes or pericyte-like cells (arrows). Together,
these results suggest that IGN gene expression is perivas-
cular cell-specific.

We used Ingenuity Pathway Analysis to categorize the
DEGs according to canonical pathways (Fig. 4C). The
three most significantly changed pathways were related
to mRNA translation: IEF2 signaling, mTOR signaling,
and regulation of EIF2 and p70S6K. Six of the DEGs
from the mTOR signaling pathway were regulators of
PI3K/Akt/mTOR signaling, which is one of the major ef-
fector pathways downstream from PDGFRα (Fig. 4D,E).
Increased ribosome biogenesis was also predicted by up-
regulation of 61 genes for ribosomal proteins in associa-
tion with the IEF2, mTOR, and p70S6K canonical path-
ways (Fig. 4F). An attractive possibility is that increased
mRNA translation contributes to the emergence of a pro-
fibrotic phenotype in part by increasing ECM protein syn-
thesis, but this mechanism requires further testing.

TGF-β signaling is frequently implicated in fibrosis, but
TGF-β target genes Ctgf, Acta2, Trpc6, and Adam12were
not up-regulated in PDGFRαD842V cells. The canonical
pathway for hepatic fibrosis was highly scored (Fig. 4C),
but DEGs in this pathway were not TGF-β-related. In-
stead, they consisted mainly of growth factors and recep-
tors (e.g., Pdgfa, Igf2, Fgfr1, and Kdr), myosins (Myh8,
Myl1, and Myl9), and miscellaneous collagens (e.g.,
Col25a1,Col15a1, andCol28a1). As our analysis was per-
formed on Nes-GFP+ cells in a prefibrotic state, it is possi-
ble that increased TGF-β signaling would be seen later in
the fibrosis process.

Nes-GFP+ cells are adipocyte precursors

PDGFRα is amarker for adipocyte precursors but is not ex-
pressed on mature adipocytes (Lee et al. 2012; Berry and
Rodeheffer 2013). Analysis of sorted cells from dermal ad-
ipose tissue of 3-d-old mice indicated thatmost Nes-GFP+

cells coexpressed markers for adipocyte precursors, in-
cluding CD29, CD34, and CD24 (Supplemental Fig. 7;
Rodeheffer et al. 2008; Church et al. 2014). As a functional
test, we cultured Nes-GFP+ cells and GFP-negative cells
ex vivo with a standard adipogenic cocktail. GFP+ cells

were far more adipogenic than GFP-negative cells, based
on lipid droplet formation (Fig. 5A) and qRT–PCR to mea-
sure adipocyte markers (Fig. 5B).

As shown previously, few adipocytes were Tomato+ in
Nes-Cre; R26-Tomato lineage tracingmice (Fig. 1J), which
seemed to conflict with the high adipogenic potential of
Nes-GFP+ cells ex vivo. To further investigate adipogene-
sis in vivo, we fed Nes-Cre; R26-Tomato mice a HFD or
normal chow diet starting at 3 wk of age. Remarkably, af-
ter 12 wk of HFD there was Tomato labeling in >50% of
adipocytes in the visceral WAT (Fig. 5C,D). Feeding
chow diet for 12 wk caused a small increase in Tomato+

adipocytes; although not statistically significant, the
trend suggested that longer aging would eventually lead
to a significant increase. These results suggest that Nes-
GFP+ cells are part of the adipocyte precursor population
and show, by lineage tracing, that Nes-Cre/Tomato+ peri-
vascular cells generate new adipocytes in adult visceral
WAT (Fig. 5C,D).

PDGFRα activation increases proliferation
and ECM production while inhibiting adipogenesis

We next investigated how PDGFRα signaling influences
proliferation and fibro/adipogenic differentiation. In these
experiments, we cultured Nes-GFP+ cells isolated from
dermal adipose tissue of 3-d-oldNes-GFP;Nes-Cre control
mice orNes-GFP; Nes-Cre; PDGFRα+/D842V mutant mice.
Treating cells with EdU revealed a greater than twofold in-
crease in the percentage of proliferatingmutant cells com-
pared with controls (Fig. 6A). This is in agreement with
the increased proliferation seen in vivo in adult tissue un-
dergoing fibrotic remodeling (Fig. 2F,G). Collagen expres-
sion was similar in the two populations of freshly sorted
Nes-GFP+ cells (Fig. 6B). However, after growing Nes-
GFP+ cells for 1 wk, we found that collagen expression
was significantly increased in mutant cells compared
with controls (Fig. 6B). We extended our ex vivo analysis
by culturing the cells for 3 wk on transwell inserts to al-
low the formation of three-dimensional cell–ECM com-
plexes (Karamichos et al. 2010). Cell–ECM complexes
were then transferred to glass slides and stained for

Figure 5. Nes-GFP+ cells are adipocyte precur-
sors. (A) Representative images of Oil Red
O-stained adipocytes differentiated from Nes-
GFP− or Nes-GFP+ cells. (B) qPCR analysis of
mature adipocyte markers after differentiation.
Expression in the noninduced groupwas normal-
ized to 1. n = 3; mean ± SEM; (∗) P < 0.05; (∗∗) P <
0.01. (C ) Quantification of the percentage of ad-
ipocytes in visceral WAT expressing the Nes-
Cre/R26-Tomato lineage reporter after 12 wk
of chow diet or HFD. n = 3; mean ± SEM; (∗∗) P
< 0.0001. (D) Epifluorescence of Nes-Cre/R26-
Tomato lineage reporter in visceral WAT after
12 wk of chow diet or HFD. Bar, 100 µm.
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collagen III.Weak stainingwas present in controls, but the
collagen III area was expanded in complexes formed from
PDGFRαD842V mutant cells (Fig. 6C,D). Adipocyte differ-
entiation was strongly inhibited in PDGFRαD842V mutant
cells treated with adipogenic cocktail (Fig. 6E,F).
PDGFRαD842V mutant cells showed weak induction of
the transcription factor Pparg2 following treatment with
adipogenic cocktail (Fig. 6F). PPARγ2 marks fate-deter-
mined preadipocytes and is the master regulator of adipo-
cyte differentiation. Therefore, PDGFRα signaling may
inhibit adipogenesis at the level of fate determination.

Transplanted Nes-GFP+ cells differentiate into
adipocytes and generate fibrosis

If WAT perivascular cells are adipocyte precursors and
PDGFRαD842V alters progenitor cell plasticity to cause a

profibrotic transition, then it should be possible to gener-
ate new WAT and fibrosis by transplantation. We used a
Matrigel plug assay to transplant Nes-GFP+ cells into syn-
geneic recipient mice (Kawaguchi et al. 1998). Freshly
sorted cells from dermal WAT of 3-d-old Nes-GFP; Nes-
Cre; R26-Tomato mice were transplanted as Matrigel/
cell mixtures into wild-type hosts. After 3 wk, WAT was
formed in the Matrigel, and Nes-GFP+ cells persisted as
mural cells within the newly generated WAT (Fig. 7A).
There were also Tomato+ adipocytes, demonstrating
that transplanted cells had differentiated into adipocytes
in situ. Next, we sorted Nes-GFP+ cells from Nes-GFP;
Nes-Cre; PDGFRα+/D842V; R26-Tomato mutants or con-
trol mice and transplanted them into wild-type hosts.
Gross analysis at 12 wk after transplantation demon-
strated that the PDGFRαD842V plugs had developed tissue
with a paucity of adipocytes compared with plugs

Figure 6. PDGFRα signaling increases proliferation and ECM production while inhibiting adipogenesis. (A) FACS analysis of cultured
Nes-GFP+ cells from control or mutant (Nes-GFP; Nes-Cre; PDGFRα+/[S]D842V) mice after 20 min of incubation with EdU. n = 3; mean ±
SD; (∗) P < 0.05. (B) qPCR analysis of collagen expression in control or mutant Nes-GFP+ cells freshly isolated or after 1 wk of culture
with stabilized ascorbic acid. n = 3; mean ± SEM; (∗) P < 0.05. (C ) Whole-mount immunofluorescence staining of collagen III protein in
fibrotic complexes generated by Nes-GFP+ cells after 3 wk of culture. (D) Quantification of the collagen III-stained area. n = 3; mean ±
SD; (∗) P < 0.05. (E) Oil Red O-stained adipocytes differentiated from control or mutant Nes-GFP+ cells. (F ) qPCR analysis of mature adi-
pocytemarkers before and after differentiation. (N.D.) Not detectable. Expression in thewild-type group was normalized to 1. n = 3; mean
± SD; (∗∗) P < 0.01; (∗∗∗) P < 0.001.
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containing control cells (Fig. 7B). By histological analysis,
the tissue in PDGFRαD842V plugs was fibrotic with prom-
inent perivascular collagen deposition (Fig. 7C). Cells
within the fibrotic lesions no longer expressed Nes-GFP
but were Tomato+, demonstrating that profibrotic cells
had originated from the transplanted progenitor cells
(Fig. 7D).

Discussion

PDGFRα signaling is sufficient to cause spontaneous fi-
brosis in diverse organs (Olson and Soriano 2009). Howev-
er, the cellular origin of profibrotic cells remains
controversial for most forms of organ fibrosis. Therefore,
the first goal of this study was to determine whether peri-
cytes or other perivascular cells could give rise to profi-
brotic cells in response to PDGFRα signaling. By using
Nestin-Cre to lineage trace pericytes and adventitial cells
in WAT and Col1a1-GFP to identify ECM-producing cells
in fibrotic lesions, we found that nearly all of the ECM-
producing cells in PDGFRαD842V mutant mice originated
from perivascular cells. The intrinsic profibrotic potential
of isolated Nes-GFP+ PDGFRαD842V pericyte-like cells
was also shownby ex vivo differentiation assays and trans-
plantation. Of interest, Cspg4-Cre; PDGFRα+/D842V and
PDGFRβ-Cre; PDGFRα+/D842V mutant mice also devel-
oped fibrosis (data not shown), but precise lineage tracing
was not possible in WAT because of significant Cre activ-
ity in the adipocyte compartment.

Our conclusion that profibrotic cells have a perivascular
origin is complementary to other lineage tracing studies
performed in the context of specific tissue injury (Hum-
phreys et al. 2010; Goritz et al. 2011; Rock et al. 2011;
Dulauroy et al. 2012; Soderblom et al. 2013; Kramann
et al. 2015). However, unlike these previous studies,

ours was not designed to simulate an organ-specific fibrot-
ic response to acute injury. Instead, the spontaneous
nature of our model provided a unique opportunity to ex-
plore the earliest fibrosis mechanisms under simplified,
noninflammatory conditions. Under physiological condi-
tions, WAT fibrosis is likely to be driven by local hypoxia,
inflammation, increased adipocyte turnover, and macro-
phage infiltration. An important question for the future
is how these stresses alter the expression of PDGF ligands
or PDGFRα signaling in a manner that would cause pro-
genitors to transition into profibrotic cells. Intriguingly,
a recent study suggested that profibrotic cells in the skin
can transition from adiponectin-expressing cells or ma-
ture adipocytes in the context of bleomycin-induced fibro-
sis (Marangoni et al. 2015). Although mature adipocytes
do not express PDGFRα under normal conditions, its re-
expression in disease states could be important.

We considered the possibility that Nes-GFP+ cells from
WAT might have properties of mesenchymal stem cells
(MSCs) because the same reporter was previously shown
to mark such cells in the bone marrow (Mendez-Ferrer
et al. 2010). We avoided the MSC label here because
Nes-GFP+ cells exhibited poor differentiation into Aliza-
rin red-stained osteogenic cells compared with bone-de-
rived PDGFRα+ Sca1+ MSCs (data not shown). Skeletal
muscle contains PDGFRα+ fibro/adipogenic progenitors
(Joe et al. 2010; Uezumi et al. 2010); whether these cells
express Nes-GFP is unknown. It has been reported that
Nes-GFP+ pericytes do not produce collagen or accumu-
late in fibrotic scars of the injured skeletal muscle, lung,
kidney, heart, or nervous system (Birbrair et al. 2013a,b,
2014). However, these studies with Nes-GFP did not in-
clude a lineage tracing component. We also did not see
Nes-GFP+ cells accumulating in fibrotic scars in Nes-
GFP; Nes-Cre; PDGFRα+/D842V mice (Supplemental Fig.
5). With lineage tracing, we found that the progeny of

Figure 7. Transplanted Nes-GFP+ cells gen-
erate adipocytes and profibrotic cells. (A) Ex-
perimental scheme to transplant Nes-GFP+

cells with Nes-Cre/Tomato lineage tracing
in Matrigel plugs into wild-type mice, with
analysis at 3 wk after transplantation. (Mural
cells) Epifluorescence of Nes-GFP with IB4
staining of endothelial cells identified persis-
tence of GFP+ cells. (Adipocytes) Epifluores-
cence of Nes-Cre/Tomato identified donor-
derived adipocytes. (B) Experimental scheme
to transplant Nes-GFP+ cells with Nes-Cre/
Tomato and either PDGFRαD842V or wild-
type PDGFRα. Analysis at 12 wk after trans-
plantation: phase contrast image of newly
generated WAT, with abundant adipocytes
in thecontrolbutsparseadipocytes in themu-
tant. (C )Trichromestaining (top) orpicosirius
redstain (bottom) of newly generatedWAT12
wkafter transplantation,with perivascular fi-
brosis in the mutant. (D) Epifluorescence of
Nes-Cre/Tomato in perivascular fibrotic ar-
eas demonstrating profibrotic cells of donor
origin. Bars:A, 50 µm;C, 100 µm;D, 50 µm.
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nestin-labeled cells did accumulate in fibrotic scars and
transitioned into collagen-producing cells (Fig. 3). Fur-
thermore, Nes-GFP+ cells from Nes-Cre; R26-Tomato;
PDGFRα+/D842Vmice caused fibrotic fat pads in transplan-
tation experiments (Fig. 7), and lineage tracing confirmed
that profibrotic cells originated from the transplanted
cells. Together, these results suggest that the Nes-GFP re-
porter becomes silenced when pericytes transition to pro-
fibrotic cells.
The cellular origin of adipocytes has recently become a

subject of intense investigation (Gesta et al. 2007; Berry
et al. 2014; Sanchez-Gurmaches and Guertin 2014). Our
study contributes new information to this question by
showing how Nes-Cre/Tomato+ perivascular cells are a
functional part of the adipocyte precursor population in
the adult. Lineage tracing showed very little contribution
of Nes-Cre/Tomato+ cells to the juvenile WAT. However,
after a HFD challenge, there was significant recruitment
of Tomato+ precursors into the adult adipocyte population
of visceral WAT. In support of there being distinct sources
for juvenile and adult adipocytes, a recent study found
that adult adipocytes are generated from perivascular
cells, while juvenile adipocytes develop from a different
origin (Jiang et al. 2014). Dermal and subcutaneous WAT
develop as independent depots, but adipocytes in both de-
pots are derived from Dlk1+ PDGFRα+ precursors (Berry
and Rodeheffer 2013; Driskell et al. 2013, 2014; Wojcie-
chowicz et al. 2013; Hudak et al. 2014). Our results are
consistent with the existence of a sublineage of Dlk1+

PDGFRα+ cells that seeds juvenile WAT with progenitors
for adipogenesis and fibrosis in the adult. The importance
of PDGFRα signaling in adipose tissue development re-
mains to be tested.
Our study highlights perturbations in progenitor cell

plasticity in the formation of profibrotic cells and eventu-
al organ fibrosis. Altered cell fate was apparent in isolated
Nes-GFP+ PDGFRαD842V cells that resisted the effects of
adipogenic inducers and transitioned to a profibrotic phe-
notype. Among the most highly expressed genes in Nes-
GFP+ cells were Dlk1, H19, and Igf2, which have roles
in cell fate and differentiation of fat, muscle, and bone
(Moon et al. 2002; Hardouin et al. 2011; Dey et al. 2014).
Individually, these three genes could have mechanistic
roles in altered fibro/adipogenic fate. However, the coordi-
nate up-regulation of 15 imprinted genes and down-regu-
lation of two more, together constituting >20% of the
known imprinted genes in mice, suggests that PDGFRα
signaling engages core mechanisms governing progenitor
cell plasticity. HowPDGFRα signaling perturbs imprinted
gene expression remains to be explored. Genetic imprint-
ing involves DNA methylation, histone modifications,
and lncRNAs to cause monoallelic gene expression in a
parent of origin-specific manner (Bartolomei 2009; Adal-
steinsson and Ferguson-Smith 2014). PDGFRα signaling
might relax the epigenetic mechanisms that maintain
monoallelic expression. Alternatively, the network of cor-
egulated imprinted genes might share common promoter
elements that are sensitive to PDGFRα signaling path-
ways. Differentiating between these possibilities will be
the subject of future studies.

Materials and methods

Mice

ThemousestrainsPDGFRα+/D842V (018433),R26-Tomato(007909),
Nestin-Cre (003771), and Cspg4-Cre (008533) are available at Jack-
sonLaboratories.Col1a1-GFPmicewereagift fromDr.DavidBren-
ner, Nestin-GFPmicewere a gift fromDr. Grigori Enikolopov, and
PDGFRβ-Cremicewere a gift fromDr.RalfAdams.Micewereused
in a mixed C57BL6/129S4 background. The Institutional Animal
CareandUseCommitteeof theOklahomaMedicalResearchFoun-
dation approved all procedures described in this study. All analyses
were based on aminimumof three PDGFRα+/842Vmutants and lit-
termate controls (expressing Cre without a PDGFRα842V allele). In
this study, dermalWATrefers to adipose tissueof the skinhypoder-
mis (Driskell et al. 2014). Visceral WAT refers to perigonadal adi-
pose tissue. Subcutaneous WAT refers to inguinal subcutaneous
adipose tissue. For in vivo EdU experiments, 2 mM EdU (Jena Bio-
science) in 200 µL of 0.9% saline was injected intraperitoneally
twiceat 24and8hbefore analysis.To studyNestin-Cre/Tomato la-
beling of adipocytes, somemicewere fed aHFD (60%calories from
fat) (Harlan Teklad, #TD06414) for up to 12 wk.

Tissue and histology

Organswerefixedineither4%paraformaldehyde(PFA)/PBSdiluted
from 16% stock (ElectronMicroscopy Sciences) or Bouin’s fixative
(Sigma). For histochemical staining, Bouin’s-fixed tissue was
embedded in paraffin and sectioned at 7 µm before staining with
Masson’s trichrome (Sigma) or picosirius red staining (ElectronMi-
croscopy Sciences). For immunohistochemistry, 4% PFA-fixed
samples were soaked in 20% sucrose/PBS overnight, embedded in
O.C.T. compound (SakuraTek), andstainedwithantibodies forper-
ilipin (1:500; Cell Signaling Technology, #9349), GFP (1:1000;
Abcam, ab6673), Cspg4 (1:100; Millipore, AB5320), PDGFRβ
(1:100;R&DSystems, BAF1042), PDGFRα (1:100;Upstate Biotech-
nology, 07-276), or Myh11 (1:100; Biomedical Technologies, BT-
562) followed by Alexa fluor 488-conjugated, Cy3-conjugated, and
Alexa fluor 647-conjugated secondary antibodies (1:100; Jackson
Immunoresearch) andDAPI (Sigma) asanuclear stain. Forvessel la-
beling, fluorescence-conjugated isolectin-IB4 (Invitrogen) was in-
cluded during incubation with secondary antibody. EdU+ cells
were detected by Click chemistry according to themanufacturer’s
protocol (Life Technologies). All images were taken with Nikon
Eclipse 80i microscopy or Olympus FV1000 confocal microscopy.
For Z-stack images, 60-µm sections were stained, and 30–60 slices
of 0.45 µm each were obtained for the maximum intensity projec-
tion. To determine the percentage of Col1a1-GFP+ cells derived
from the Nestin-Cre/Tomato+ lineage, each GFP+ DAPI+ cell was
scoredasTomato+orTomato-negative.Tomeasurethedistancebe-
tween individual Nes-GFP+ cells and the capillary endothelium,
ImageJ was used to measure from the center of the nucleus
(DAPI+) of eachNes-GFP+ cell to thenearest IB4+ endothelialmem-
brane.Fordatacollection, three to six images at 400×magnification
were analyzed for three differentNes-GFPmice,with a total of 167
Nes-GFP+cells.DataweretransferredtoGraphPadPrismtoproduce
the graph of relative frequency distribution. To quantify Tomato+

adipocytes,cryosectionswerestainedwithperilipinantibody.After
imaging at 200×, thenumberofTomato+ adipocytes ineachsection
was divided by the total number of perilipin+ adipocytes to deter-
mine the percent of Tomato+ adipocytes.

qRT–PCR

Total RNAwas isolated from cells (with TRIzol reagent) or tissue
(with RNeasy minikit, Qiagen), and cDNAwas synthesized with
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SuperScript III reverse transcriptase according to themanufactur-
er’s protocol (Life Technologies). PCR was then performed with a
Bio-Rad CFX96 real-time system (Bio-Rad) and SYBR Green
ReadyMix (Sigma). The expression levels were determined by
normalization to the average values of two housekeeping genes
(Timm17b and Gapdh) with a ΔΔCt method, and the expression
levels relative to experimental control are shown. For primer se-
quences, please refer to Supplemental Table 2.

Isolation of Nestin-GFP+ cells

For all ex vivo analysis, transplantation, and RNA-seq studies,
Nestin-GFP+ cells were isolated by the following procedure.
Cell suspensions were prepared from the dermal WAT of 3-d-
old mice as described (Lichti et al. 2008). Briefly, the whole skin
was floated on 0.25% cold trypsin overnight with the epidermis
up. The next day, the epidermis was separated from dermal tissue
and discarded. Dermis was then digested with 0.35% collagenase
type I (GIBCO) in DMEM for 60 min at 37°C. Hair follicles were
removed by low-speed centrifugation. Subsequently, Nes-GFP+

single cells were sorted from cell suspensions with a MoFlo
XDP (Beckman Coulter) cell sorter, and the purity of sorted cells
was verified as >95% by rerunning the sorted population.

cDNA library construction and sequencing

Total RNAwas purified from 2million to 3million freshly sorted
Nes-GFP+ cells using RNeasy minikit (Qiagen). cDNA libraries
were prepared with NEBNext Ultra Directional RNA library
preparation kit for Illumina (New England Biolabs) according to
the manufacturer’s protocol. In short, mRNA was isolated from
1 µg of purified total RNA with oligo dT beads and fragmented.
Next, first and second strand cDNA were synthesized, followed
by purification using Agencourt AMPure XP beads (Beckman
Coulter). The second strand cDNAs were end-repaired, A-tailed,
and adaptor-ligated. Size-selected DNAwith Agencourt AMPure
XP beads was enriched by 13-cycle PCR with each index primer
and again purified using the beads. Each indexed library was ana-
lyzed by theAgilent 2200TapeStation system, andRNA integrity
number equivalents (RINe) ranged from 9.2 to 9.6. Prior to se-
quencing, the library pool was absolutely quantified via qPCR us-
ing the Illumina library quantification kit by KAPA Biosystems
on a Roche LightCycler 480 qPCR instrument. The pool was
then diluted to 2 nM followed byNaOH denaturation and further
dilution to 12 pM. The final dilution product was then loaded
onto a single Illumina HiSeq 2500 high-output lane and se-
quenced with paired-end, 100-base-pair (bp) reads, which pro-
duced 20 million to 40 million read pairs per sample.

RNA-seq data processing and accession numbers

The quality of the reads was assessed at any processing step using
the FastQC tool (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc). Adapters were removed using Trimmomatic
tool. Sequencing data were processed according to guidelines
for RNA-seq data analysis (Trapnell et al. 2012). Briefly, reads
were aligned to a mouse genome indexed with Bowtie 2 using
TopHat version 2.0.4 (Trapnell et al. 2012). The alignment set-
tings were adjusted to set “mate inner distance” to 170 bp and
“mate standard deviation” to 100 bp and “microexon search”
and “prefiltermultihits”were turned on. The Bowtie 2 alignment
setting was set to “very sensitive,” and the “library type”was set
to “fr-firststrand.” For differential gene expression analysis, ex-
pression level was obtained using the htseq-count tool by count-
ing reads inMusmusculus gene annotations provided by Ensembl

release 67. Quality control of the expression data was performed
using the arrayQualityMetrics R package. DEGs were identified
using the DeSeq2 R package, with a controlling false discovery
rate of <10%. Functional analysis was performed using Ingenuity
Pathway Analysis (Ingenuity Systems, http:// www.ingenuity.
com) and the topGO R package. Visualization was performed
within the R/Bioconductor environment.

ISH

Template sequences from 292 to 1250 of Dlk1 (NM_010052),
from 474 to 1416 of H19 (NR_001592), and from 702 to 1646
Igf2 (NM_001122736) were used to generate antisense RNA
probes for ISH. The dissected tissue was fixed with 10% neutral
formalin for 7 d, soaked in 20% sucrose/PBS overnight, embedded
in OCT compound (Sakura Tek), and sectioned at 14 µm. Dig-la-
beled RNA probes were synthesized by DIG RNA labeling mix
(Roche) from DNA template sequences. Hybridized probes were
detected with AP-conjugated anti-Dig Fab fragments (Roche)
and developed with NBT/BCIP.

Cell culture

Sorted Nes-GFP+ cells were expanded under hypoxic conditions
(5% O2, 10% CO2) with MesenCult medium according to the
manufacturer’s protocol (Stem Cell Technologies), and cells at
passages 1–3 were used for differentiation and proliferation exper-
iments under normoxia conditions. Adipogenic differentiation
was induced with two cycles of adipogenic cocktail treatment
(one cycle of treatment: DMEM+ 10% FBS containing 10 µg/mL
insulin, 0.5 mM 3-isobutyl-1-methylxanthine, and 0.25 µg/mL
dexamethasone for 2 d followed by 2 d of DMEM+ 10% FBS con-
taining 10 µg/mL insulin) and maintained with DMEM+ 10%
FBScontaining10µg/mLinsulinuntil day11, afterwhichthecells
were fixed and stainedwithOil RedO. For in vitro fibrosis assays,
cells were cultured with DMEM+ 10% FBS containing 0.5 mM
ascorbic acid derivative (2-o-α-D-glucopyranosyl-L-ascorbic
acid). ForqRT–PCRanalysis, after 7d, cellsweregrownoncell cul-
ture plastic. For long-term culture and formation of cell–ECM
complexes, the cellswere cultured on polycarbonate transwell in-
serts for 3 wk. The resulting complexes were fixed with 4% PFA,
separated from the transwell, andmounted on glass slides. The re-
sulting complex was then stained with anti-Col3a1 antibody
(1:500; Abcam, ab7778), followed by Alexa fluor 647-conjugated
secondary antibody (1:100; Jackson Laboratory). Col3a1-positive
areawas calculated for eachcomplex (n = 3) using ImageJ. For in vi-
tro proliferation assays, the cells were incubated with 20 µM EdU
for 20 min, and EdU-positive cells were detected using the LSR II
after performing aClick chemistry reaction according to theman-
ufacturer’s protocol (Life Technologies).

Transplantation

One million freshly isolated Nes-GFP+ cells were suspended in
50 µL of PBS and mixed with 150 µL of Matrigel (BD, #356234).
Next, 50 µLwas injected subcutaneously into the foreheads of re-
cipient mice. After 3–4 wk or 3 mo, the newly formed fat pads
were dissected and analyzed.

Statistical analysis (excluding RNA-seq)

All calculations were performed using GraphPad Prism 6.0 soft-
ware (GraphPad Software, Inc.). The differences between two
groups were assessed by unpaired Student’s t-test, and compari-
sons of multiple groups involved the use of ANOVA. P < 0.05
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was considered to be significant. The significance of imprinted
DEGs was assessed by a χ2 test with Yates correction using these
values: 17 imprinted DEGs, 1339 nonimprinted DEGs, 53 im-
printed genes that were not DEGs, and 37,922 nonimprinted
genes that were not DEGs.

Accession numbers

RNA-seq data have been deposited in theGene ExpressionOmni-
bus (GEO) public database under accession number GSE64510.
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