11,617 research outputs found

    Short Communication: Evidence That Microbial Translocation Occurs in HIV-Infected Children in the United Kingdom

    Get PDF
    Microbial translocation (MT) from the gut is implicated in driving immune activation, increasing morbidity and mortality in HIV. We used bacterial 16S rDNA PCR, Sanger sequencing, and high-throughput sequencing to identify microbial DNA in the bloodstre

    Spitzer 3.6 micron and 4.5 micron full-orbit lightcurves of WASP-18

    Get PDF
    We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.Comment: 17 pages, 10 figures. Accpeted for publication in MNRA

    Far-UV Emissions of the Sun in Time: Probing Solar Magnetic Activity and Effects on Evolution of Paleo-Planetary Atmospheres

    Full text link
    We present and analyze FUSE observations of six solar analogs. These are single, main-sequence G0-5 strs selected as proxies for the Sun at several stages of its main-sequence lifetime. The emission features in the FUSE 920-1180 A wavelength range allow for a critical probe of the hot plasma over three decades in temperature. Using the flux ratio CIII 1176/977 as diagnostics, we investigate the dependence of the electron pressure of the transition region as a function of the rotation period, age and magnetic activity. The results from these solar proxies indicate that the electron pressure of the stellar ~10^5-K plasma decreases by a factor of about 70 between the young, fast-rotating magnetically active star and the old, slow-rotating inactive star. Also, the observations indicate that the average surface fluxes of emission features strongly decrease with increasing stellar age and longer rotation period. The emission flux evolution with age or rotation period is well fitted by power laws, which become steeper from cooler chromospheric (10^4 K) to hotter coronal (10^7 K) plasma. The relationship for the integrated (920-1180 A) FUSE flux indicates that the solar far-ultraviolet emissions were about twice the present value 2.5 Gyr ago and about 4 times the present value 3.5 Gyr ago. Note also that the FUSE/FUV flux of the Zero-Age Main Sequence Sun could have been higher by as much as 50 times. Our analysis suggests that the strong FUV emissions of the young Sun may have played a crucial role in the developing planetary system, in particular through the photoionization, photochemical evolution and possible erosion of the planetary atmospheres. (abridged)Comment: 15 pages, 8 figures, accepted for publication in Ap

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    Development of Lumped Element Kinetic Inductance Detectors for NIKA

    Get PDF
    Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the N\'eel Iram Kids Array (NIKA) collaboration has been to investigate the suitability of these detectors for deployment at the 30-meter IRAM telescope located on Pico Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID), using quarter wavelength resonators, the resonant circuit of a LEKID consists of a discrete inductance and capacitance coupled to a feedline. A high and constant current density distribution in the inductive part of these resonators makes them very sensitive. Due to only one metal layer on a silicon substrate, the fabrication is relatively easy. In order to optimize the LEKIDs for this application, we have recently probed a wide variety of individual resonator and array parameters through simulation and physical testing. This included determining the optimal feed-line coupling, pixel geometry, resonator distribution within an array (in order to minimize pixel cross-talk), and resonator frequency spacing. Based on these results, a 144-pixel Aluminum array was fabricated and tested in a dilution fridge with optical access, yielding an average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2 under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2 polarizations will be presented. Also first optical measurements of a titanium nitride array will be discussed.Comment: 5 pages, 12 figures; ISSTT 2011 Worksho

    Patterns of Individual Shopping Behavior

    Get PDF
    Much of economic theory is built on observations of aggregate, rather than individual, behavior. Here, we present novel findings on human shopping patterns at the resolution of a single purchase. Our results suggest that much of our seemingly elective activity is actually driven by simple routines. While the interleaving of shopping events creates randomness at the small scale, on the whole consumer behavior is largely predictable. We also examine income-dependent differences in how people shop, and find that wealthy individuals are more likely to bundle shopping trips. These results validate previous work on mobility from cell phone data, while describing the unpredictability of behavior at higher resolution.Comment: 4 pages, 5 figure

    Nonthermal Hard X-ray Emission and Iron Kalpha Emission from a Superflare on II Pegasi

    Full text link
    We report on an X-ray flare detected on the active binary system II~Pegasi with the Swift telescope. The trigger had a 10-200 keV luminosity of 2.2×1032\times10^{32} erg s−1^{-1}-- a superflare, by comparison with energies of typical stellar flares on active binary systems. The trigger spectrum indicates a hot thermal plasma with T∼\sim180 ×106\times10^{6}K. X-ray spectral analysis from 0.8--200 keV with the X-Ray Telescope and BAT in the next two orbits reveals evidence for a thermal component (T>>80 ×106\times10^{6}K) and Fe K 6.4 keV emission. A tail of emission out to 200 keV can be fit with either an extremely high temperature thermal plasma (T∼3×108\sim3\times10^{8}K) or power-law emission. Based on analogies with solar flares, we attribute the excess continuum emission to nonthermal thick-target bremsstrahlung emission from a population of accelerated electrons. We estimate the radiated energy from 0.01--200 keV to be ∼6×1036\sim6\times10^{36} erg, the total radiated energy over all wavelengths ∼1038\sim10^{38} erg, the energy in nonthermal electrons above 20 keV ∼3×1040\sim3\times10^{40} erg, and conducted energy <5×1043<5\times10^{43} erg. The nonthermal interpretation gives a reasonable value for the total energy in electrons >> 20 keV when compared to the upper and lower bounds on the thermal energy content of the flare. This marks the first occasion in which evidence exists for nonthermal hard X-ray emission from a stellar flare. We investigate the emission mechanism responsible for producing the 6.4 keV feature, and find that collisional ionization from nonthermal electrons appears to be more plausible than the photoionization mechanism usually invoked on the Sun and pre-main sequence stars.Comment: 41 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Electronic structure of Pr0.67_{0.67}Ca0.33_{0.33}MnO3_3 near the Fermi level studied by ultraviolet photoelectron and x-ray absorption spectroscopy

    Full text link
    We have investigated the temperature-dependent changes in the near-EEF_F occupied and unoccupied states of Pr0.67_{0.67}Ca0.33_{0.33}MnO3_3 which shows the presence of ferromagnetic and antiferromagnetic phases. The temperature-dependent changes in the charge and orbital degrees of freedom and associated changes in the Mn 3dd - O 2pp hybridization result in varied O 2pp contributions to the valence band. A quantitative estimate of the charge transfer energy (EECT_{CT}) shows a larger value compared to the earlier reported estimates. The charge localization causing the large EECT_{CT} is discussed in terms of different models including the electronic phase separation.Comment: 19 pages, 7 figures, To be published in Phy. Rev.

    An Improved Experimental Limit on the Electric Dipole Moment of the Neutron

    Get PDF
    An experimental search for an electric-dipole moment (EDM) of the neutron has been carried out at the Institut Laue-Langevin (ILL), Grenoble. Spurious signals from magnetic-field fluctuations were reduced to insignificance by the use of a cohabiting atomic-mercury magnetometer. Systematic uncertainties, including geometric-phase-induced false EDMs, have been carefully studied. Two independent approaches to the analysis have been adopted. The overall results may be interpreted as an upper limit on the absolute value of the neutron EDM of |d_n| < 2.9 x 10^{-26} e cm (90% CL).Comment: 5 pages, 2 figures. The published PRL is slightly more terse (e.g. no section headings) than this version, due to space constraints. Note a small correction-to-a-correction led to an adjustment of the final limit from 3.0 to 2.9 E-26 e.cm compared to the first version of this preprin
    • …
    corecore