19,182 research outputs found
Investigating the Rotational Phase of Stellar Flares on M dwarfs Using K2 Short Cadence Data
We present an analysis of K2 short cadence data of 34 M dwarfs which have
spectral types in the range M0 - L1. Of these stars, 31 showed flares with a
duration between 10-90 min. Using distances obtained from Gaia DR2
parallaxes, we determined the energy of the flares to be in the range
erg. In agreement with previous studies
we find rapidly rotating stars tend to show more flares, with evidence for a
decline in activity in stars with rotation periods longer than 10 days.
The rotational modulation seen in M dwarf stars is widely considered to result
from a starspot which rotates in and out of view. Flux minimum is therefore the
rotation phase where we view the main starspot close to the stellar disk
center. Surprisingly, having determined the rotational phase of each flare in
our study we find none show any preference for rotational phase. We outline
three scenarios which could account for this unexpected finding. The
relationship between rotation phase and flare rate will be explored further
using data from wide surveys such as NGTS and TESS.Comment: Accepted main Journal MNRA
Can coronal hole spicules reach coronal temperatures?
We aim with the present study to provide observational evidences on whether
coronal hole spicules reach coronal temperatures. We combine multi-instrument
co-observations obtained with the SUMER/SoHO and with the EIS/SOT/XRT/Hinode.
The analysed three large spicules were found to be comprised of numerous thin
spicules which rise, rotate and descend simultaneously forming a bush-like
feature. Their rotation resembles the untwisting of a large flux rope. They
show velocities ranging from 50 to 250 km/s. We clearly associated the red- and
blue-shifted emissions in transition region lines with rotating but also with
rising and descending plasmas, respectively. Our main result is that these
spicules although very large and dynamic, show no presence in spectral lines
formed at temperatures above 300 000 K. The present paper brings out the
analysis of three Ca II H large spicules which are composed of numerous dynamic
thin spicules but appear as macrospicules in EUV lower resolution images. We
found no coronal counterpart of these and smaller spicules. We believe that the
identification of phenomena which have very different origins as macrospicules
is due to the interpretation of the transition region emission, and especially
the He II emission, wherein both chromospheric large spicules and coronal X-ray
jets are present. We suggest that the recent observation of spicules in the
coronal AIA/SDO 171 A and 211 A channels is probably due to the existence of
transition region emission there.Comment: 4 pages, 4 figures, accepted for publication in A&
Prevention of osteoporotic refractures in regional Australia
Objective: Clinical guidelines recommend that patients who sustain a minimal trauma fracture (MTF) should receive a bone mineral density (BMD) scan and bisphosphonate (or equivalent) therapy if diagnosed with osteoporosis. A pilot fracture liaison service (FLS) was implemented in regional NSW to improve adherence to the guidelines.
Design: Prospective cohort study with an historical control.
Setting: Primary care.
Participants: Control (n = 47) and cohort (n = 93) groups comprised patients consenting to interview who presented with a MTF to the major referral hospital 4 months before and 12 months after FLS implementation respectively.
Main outcome measures: Primary outcome measures were the rates of BMD scans and anti-osteoporotic medication initiation/review after MTF. Hospital admission data were also examined to determine death and refracture rates for all patients presenting during the study period with a primary diagnosis of MTF within 3 years of their initial fracture.
Results: Although there was no improvement in BMD scanning rates, the reported rate of medication initiation/review after fracture was significantly higher (P \u3c 0.05) in the FLS cohort. However, once adjusted for age, this association was not significant (P = 0.086). There was a lower refracture rate during the cohort period (P = 0.013), however, there were significantly more deaths (P = 0.035) within 3 years of initial fracture. When deaths were taken into account via competing risk regression, patients in the cohort period were significantly less likely to refracture than those in the control period (Hazard ratio = 0.576, P = 0.032).
Conclusions: A rurally based nurse-led FLS was associated with modest improvement after MTF. Consideration should be given to ways to strengthen the model of care to improve outcomes
Data users note: Apollo 17 lunar photography
The availability of Apollo 17 pictorial data is announced as an aid to the selection of the photographs for study. Brief descriptions are presented of the Apollo 17 flight, and the photographic equipment used during the flight. The following descriptions are also included: service module photography, command module photography, and lunar surface photography
Reproducibilty of partial weight bearing
Objectives: To find out whether partial weight bearing can be reproduced and retained. Design: In vivo experiment in normal subjects. Intervention: Training for partial weight bearing (25% of body weight) using bathroom scales. Main outcome measurement: Reproducibility on force platform immediately after training and after 60 min. Results: Twelve subjects were asked to reproduce 25% of their body weight through either the dominant or non-dominant limb on force platform after three practice attempts on bathroom scales with concurrent visual feedback. No feedback was provided after the measurements on force plate. The process was repeated after 1 h without any practice sessions in the interim period to find out if the weight practised could be retained. The mean 0-min reading was found to be 25.9% of body weight while the mean 60-min reading was found to be 24.4%. The p-value for the difference between the two means was found to be 0.3841. Conclusions: This study indicates that partial weight bearing instructions can be quantified and graded. Simple bathroom scales are sufficient to educate the patients and this can be practised at home after an initial period of supervision
Magnetic Reconnection resulting from Flux Emergence: Implications for Jet Formation in the lower solar atmosphere?
We aim at investigating the formation of jet-like features in the lower solar
atmosphere, e.g. chromosphere and transition region, as a result of magnetic
reconnection. Magnetic reconnection as occurring at chromospheric and
transition regions densities and triggered by magnetic flux emergence is
studied using a 2.5D MHD code. The initial atmosphere is static and isothermal,
with a temperature of 20,000 K. The initial magnetic field is uniform and
vertical. Two physical environments with different magnetic field strength (25
G and 50 G) are presented. In each case, two sub-cases are discussed, where the
environments have different initial mass density. In the case where we have a
weaker magnetic field (25 G) and higher plasma density (
cm), valid for the typical quiet Sun chromosphere, a plasma jet would be
observed with a temperature of 2--3 K and a velocity as high as
40 km/s. The opposite case of a medium with a lower electron density
( cm), i.e. more typical for the transition region,
and a stronger magnetic field of 50 G, up-flows with line-of-sight velocities
as high as 90 km/s and temperatures of 6 10 K, i.e. upper
transition region -- low coronal temperatures, are produced. Only in the latter
case, the low corona Fe IX 171 \AA\ shows a response in the jet which is
comparable to the O V increase. The results show that magnetic reconnection can
be an efficient mechanism to drive plasma outflows in the chromosphere and
transition region. The model can reproduce characteristics, such as temperature
and velocity for a range of jet features like a fibril, a spicule, an hot X-ray
jet or a transition region jet by changing either the magnetic field strength
or the electron density, i.e. where in the atmosphere the reconnection occurs.Comment: 11 pages, 13 figures, 2 table
Evolutionary L∞ identification and model reduction for robust control
An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do
VCE early acoustic test results of General Electric's high-radius ratio coannular plug nozzle
Results of variable cycle engine (VCE) early acoustic engine and model scale tests are presented. A summary of an extensive series of far field acoustic, advanced acoustic, and exhaust plume velocity measurements with a laser velocimeter of inverted velocity and temperature profile, high radius ratio coannular plug nozzles on a YJ101 VCE static engine test vehicle are reviewed. Select model scale simulated flight acoustic measurements for an unsuppressed and a mechanical suppressed coannular plug nozzle are also discussed. The engine acoustic nozzle tests verify previous model scale noise reduction measurements. The engine measurements show 4 to 6 PNdB aft quadrant jet noise reduction and up to 7 PNdB forward quadrant shock noise reduction relative to a fully mixed conical nozzle at the same specific thrust and mixed pressure ratio. The influences of outer nozzle radius ratio, inner stream velocity ratio, and area ratio are discussed. Also, laser velocimeter measurements of mean velocity and turbulent velocity of the YJ101 engine are illustrated. Select model scale static and simulated flight acoustic measurements are shown which corroborate that coannular suppression is maintained in forward speed
A Prototype for the PASS Permanent All Sky Survey
A prototype system for the Permanent All Sky Survey (PASS) project is
presented. PASS is a continuous photometric survey of the entire celestial
sphere with a high temporal resolution. Its major objectives are the detection
of all giant-planet transits (with periods up to some weeks) across stars up to
mag 10.5, and to deliver continuously photometry that is useful for the study
of any variable stars. The prototype is based on CCD cameras with short focal
length optics on a fixed mount. A small dome to house it at Teide Observatory,
Tenerife, is currently being constructed. A placement at the antarctic Dome C
is also being considered. The prototype will be used for a feasibility study of
PASS, to define the best observing strategies, and to perform a detailed
characterization of the capabilities and scope of the survey. Afterwards, a
first partial sky surveying will be started with it. That first survey may be
able to detect transiting planets during its first few hundred hours of
operation. It will also deliver a data set around which software modules
dealing with the various scientific objectives of PASS will be developed. The
PASS project is still in its early phase and teams interested in specific
scientific objectives, in providing technical expertise, or in participating
with own observations are invited to collaborate.Comment: Accepted for Astronomische Nachrichten (special issue for 3rd Potsdam
Thinkshop 'Robotic Astronomy' in July 2004). 4 pages, 4 fig
- …