3,027 research outputs found

    A nomogram to determine required seed air kerma strength in planar 131 Cesium permanent seed implant brachytherapy

    Get PDF
    Purpose: Intraoperatively implanted Cesium-131 ( 131 Cs) permanent seed brachytherapy is used to deliver highly localized re-irradiation in recurrent head and neck cancers. A single planar implant of uniform air kerma strength (AKS) seeds and 10 mm seed-to-seed spacing is used to deliver the prescribed dose to a point 5 mm or 10 mm perpendicular to the center of the implant plane. Nomogram tables to quickly determine the required AKS for rectangular and irregularly shaped implants were created and dosimetrically verified. By eliminating the need for a full treatment planning system plan, nomogram tables allow for fast dose calculation for intraoperative re-planning and for a second check method. Material and methods: TG-43U1 recommended parameters were used to create a point-source model in MATLAB. The dose delivered to the prescription point from a single 1 U seed at each possible location in the implant plane was calculated. Implant tables were verified using an independent seed model in MIM Symphony LDRℱ. Implant tables were used to retrospectively determine seed AKS for previous cases: three rectangular and three irregular. Results: For rectangular implants, the percent difference between required seed AKS calculated using MATLAB and MIM was at most 0.6%. For irregular implants, the percent difference between MATLAB and MIM calculations for individual seed locations was within 1.5% with outliers of less than 3.1% at two distal locations (10.6 cm and 8.8 cm), which have minimal dose contribution to the prescription point. The retrospectively determined AKS for patient implants using nomogram tables agreed with previous calculations within 5% for all six cases. Conclusions: Nomogram tables were created to determine required AKS per seed for planar uniform AKS 131 Cs implants. Comparison with the treatment planning system confirms dosimetric accuracy that is acceptable for use as a second check or for dose calculation in cases of intraoperative re-planning

    A systematic review of treating recurrent head and neck cancer: a reintroduction of brachytherapy with or without surgery.

    Get PDF
    Purpose: To review brachytherapy use in recurrent head and neck carcinoma (RHNC) with focus on its efficacy and complication rates. Material and methods: A literature search of PubMed, Ovid, Google Scholar, and Scopus was conducted from 1990 to 2017. Publications describing treatment of RHNC with brachytherapy with or without surgery were included. The focus of this review is on oncologic outcomes and the safety of brachytherapy in the recurrent setting. Results: Thirty studies involving RHNC treatment with brachytherapy were reviewed. Brachytherapy as adjunctive treatment to surgical resection appears to be associated with an improved local regional control and overall survival, when compared with the published rates for re-irradiation utilizing external beam radiotherapy (RT) or brachytherapy alone. Safety data remains variable with different isotopes and dose rates with implantable brachytherapy demonstrating a tolerable side effect profile. Conclusions: Although surgery remains a mainstay treatment for RHNC, intraoperative interstitial brachytherapy delivery as adjunctive therapy may improve the treatment outcome and may be associated with fewer complication rates as compared to reirradiation using external beam radiotherapy. Further investigations are required to elucidate the role of brachytherapy for RHNC

    Re-implantation of suboptimal prostate seed implantation: technique with intraoperative treatment planning.

    Get PDF
    PURPOSE: Post-implant dosimetry following prostate seed implantation (PSI) occasionally reveals suboptimal dosimetric coverage of the gland. Published reports of re-implantation techniques have focused on earlier-generation techniques, including preplanned approaches and stranded seeds. The purpose of this case report is to describe a customizable approach to perform corrective re-implantation using loose seeds and intraoperative planning technique. MATERIAL AND METHODS: This case report describes a 63-year-old male with favorable risk prostate adenocarcinoma receiving PSI. Thirty day post-implant dosimetric evaluation revealed suboptimal coverage of the base of the gland. Using guidance from post-implant CT-images and real-time planning, the patient received a corrective re-implantation with intraoperative planning. RESULTS: Post-implant dosimetry after re-implantation procedure with intraoperative planning yielded improved target volume coverage that achieved standard dosimetric criteria. CONCLUSIONS: Re-implantation as a salvage treatment technique after sub-optimal PSI is a valid treatment option performed with intraoperative real-time planning

    e-VLBI observations of GHz-Peaked Spectrum (GPS) radio sources in nearby galaxies from the AT20G survey

    Full text link
    GHz-peaked spectrum (GPS) radio sources are thought to be young objects which later evolve into FR-I and FR-II radio galaxies. We have used the Australia Telescope 20GHz (AT20G) survey catalogue to select a uniform sample of GPS sources with spectral peaks above 5GHz, which should represent the youngest members of this class. In this paper, we present e-VLBI observations of ten such objects which are associated with nearby (z<0.15) galaxies and so represent a new population of local, low--power GPS sources. Our e-VLBI observations were carried out at 4.8GHz with the Australia Telescope Long Baseline Array (LBA) using a real--time software correlator. All ten sources were detected, and were unresolved on scales of ~100mas, implying that they are typically less than 100pc in linear size.Comment: 7 pages, 7 figures, 3 table

    The NIKA instrument: results and perspectives towards a permanent KID based camera for the Pico Veleta observatory

    Get PDF
    The New IRAM KIDs Array (NIKA) is a pathfinder instrument devoted to millimetric astronomy. In 2009 it was the first multiplexed KID camera on the sky; currently it is installed at the focal plane of the IRAM 30-meters telescope at Pico Veleta (Spain). We present preliminary data from the last observational run and the ongoing developments devoted to the next NIKA-2 kilopixels camera, to be commissioned in 2015. We also report on the latest laboratory measurements, and recent improvements in detector cosmetics and read-out electronics. Furthermore, we describe a new acquisition strategy allowing us to improve the photometric accuracy, and the related automatic tuning procedure.Comment: 24th International Symposium on Space Terahertz Technology, ISSTT 2013, April 8 to 10, 2013, Groningen, the Netherland

    Latest NIKA results and the NIKA-2 project

    Full text link
    NIKA (New IRAM KID Arrays) is a dual-band imaging instrument installed at the IRAM (Institut de RadioAstronomie Millimetrique) 30-meter telescope at Pico Veleta (Spain). Two distinct Kinetic Inductance Detectors (KID) focal planes allow the camera to simultaneously image a field-of-view of about 2 arc-min in the bands 125 to 175 GHz (150 GHz) and 200 to 280 GHz (240 GHz). The sensitivity and stability achieved during the last commissioning Run in June 2013 allows opening the instrument to general observers. We report here the latest results, in particular in terms of sensitivity, now comparable to the state-of-the-art Transition Edge Sensors (TES) bolometers, relative and absolute photometry. We describe briefly the next generation NIKA-2 instrument, selected by IRAM to occupy, from 2015, the continuum imager/polarimeter slot at the 30-m telescope.Comment: Proceedings of Low Temperature Detectors 15 (LTD-15), Pasadena, June 201

    Detection of the tSZ effect with the NIKA camera

    Full text link
    We present the first detection of the thermal Sunyaev-Zel'dovich (tSZ) effect from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors) based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic Microwave Background) spectrum produced by the inverse Compton interaction of CMB photons with the hot electrons of the ionized intra-cluster medium. The massive, intermediate redshift cluster RX J1347.5-1145 has been observed using NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies of the superconducting resonators are shifted by mm-wave photons absorption. This tSZ cluster observation demonstrates the potential of the next generation NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta (Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at 240GHz, providing in that band also a measurement of the linear polarization. NIKA2 will be commissioned in 2015.Comment: SF2A Proceedings 201

    High resolution SZ observations at the IRAM 30-m telescope with NIKA

    Full text link
    High resolution observations of the thermal Sunyaev-Zel'dovich (tSZ) effect are necessary to allow the use of clusters of galaxies as a probe for large scale structures at high redshifts. With its high resolution and dual-band capability at millimeter wavelengths, the NIKA camera can play a significant role in this context. NIKA is based on newly developed Kinetic Inductance Detectors (KIDs) and operates at the IRAM 30m telescope, Pico Veleta, Spain. In this paper, we give the status of the NIKA camera, focussing on the KID technology. We then present observations of three galaxy clusters: RX J1347.5-1145 as a demonstrator of the NIKA capabilities and the recent observations of CL J1226.9+3332 (z = 0.89) and MACS J0717.5+3745 (z = 0.55). We also discuss prospects for the final NIKA2 camera, which will have a 6.5 arcminute field of view with about 5000 detectors in two bands at 150 and 260 GHz

    The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy

    Full text link
    NIKA2 (New IRAM KID Array 2) is a camera dedicated to millimeter wave astronomy based upon kilopixel arrays of Kinetic Inductance Detectors (KID). The pathfinder instrument, NIKA, has already shown state-of-the-art detector performance. NIKA2 builds upon this experience but goes one step further, increasing the total pixel count by a factor ∌\sim10 while maintaining the same per pixel performance. For the next decade, this camera will be the resident photometric instrument of the Institut de Radio Astronomie Millimetrique (IRAM) 30m telescope in Sierra Nevada (Spain). In this paper we give an overview of the main components of NIKA2, and describe the achieved detector performance. The camera has been permanently installed at the IRAM 30m telescope in October 2015. It will be made accessible to the scientific community at the end of 2016, after a one-year commissioning period. When this happens, NIKA2 will become a fundamental tool for astronomers worldwide.Comment: Proceedings of the 16th Low Temperature Detectors workshop. To be published in the Journal of Low Temperature Physics. 8 pages, 4 figures, 1 tabl
    • 

    corecore