21 research outputs found

    Neorogioltriol and related diterpenes from the red alga Laurencia inhibit inflammatory bowel disease in mice by suppressing M1 and promoting M2-like macrophage responses

    No full text
    Macrophages are central mediators of inflammation, orchestrating the inflammatory response through the production of cytokines and nitric oxide. Macrophages obtain pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes, which can be modulated by soluble factors, including natural products. Despite the crucial protective role of inflammation, chronic or deregulated inflammation can lead to pathological states, such as autoimmune diseases, metabolic disorders, cardiovascular diseases, and cancer. In this case, we studied the anti-inflammatory activity of neorogioltriol (1) in depth and identified two structurally related diterpenes, neorogioldiol (2), and O11,15-cyclo-14-bromo-14,15-dihydrorogiol-3,11-diol (3), with equally potent activity. We investigated the mechanism of action of metabolites 1-3 and found that all three suppressed macrophage activation and promoted an M2-like anti-inflammatory phenotype by inducing expression of Arginase1, MRC1, IRAK-M, the transcription factor C/EBPβ, and the miRNA miR-146a. In addition, they suppressed iNOS induction and nitric oxide production. Importantly, treatment of mice with 2 or 3 suppressed DSS-induced colitis by reducing tissue damage and pro-inflammatory cytokine production. Thus, all these three diterpenes are promising lead molecules for the development of anti-inflammatory agents targeting macrophage polarization mechanisms. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Neorogioltriol and Related Diterpenes from the Red Alga <i>Laurencia</i> Inhibit Inflammatory Bowel Disease in Mice by Suppressing M1 and Promoting M2-Like Macrophage Responses

    No full text
    Macrophages are central mediators of inflammation, orchestrating the inflammatory response through the production of cytokines and nitric oxide. Macrophages obtain pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes, which can be modulated by soluble factors, including natural products. Despite the crucial protective role of inflammation, chronic or deregulated inflammation can lead to pathological states, such as autoimmune diseases, metabolic disorders, cardiovascular diseases, and cancer. In this case, we studied the anti-inflammatory activity of neorogioltriol (1) in depth and identified two structurally related diterpenes, neorogioldiol (2), and O11,15-cyclo-14-bromo-14,15-dihydrorogiol-3,11-diol (3), with equally potent activity. We investigated the mechanism of action of metabolites 1&#8315;3 and found that all three suppressed macrophage activation and promoted an M2-like anti-inflammatory phenotype by inducing expression of Arginase1, MRC1, IRAK-M, the transcription factor C/EBP&#946;, and the miRNA miR-146a. In addition, they suppressed iNOS induction and nitric oxide production. Importantly, treatment of mice with 2 or 3 suppressed DSS-induced colitis by reducing tissue damage and pro-inflammatory cytokine production. Thus, all these three diterpenes are promising lead molecules for the development of anti-inflammatory agents targeting macrophage polarization mechanisms

    The Downregulation of GFI1 by the EZH2-NDY1/KDM2B-JARID2 Axis and by Human Cytomegalovirus (HCMV) Associated Factors Allows the Activation of the HCMV Major IE Promoter and the Transition to Productive Infection

    No full text
    <div><p>Earlier studies had suggested that epigenetic mechanisms play an important role in the control of human cytomegalovirus (HCMV) infection. Here we show that productive HCMV infection is indeed under the control of histone H3K27 trimethylation. The histone H3K27 methyltransferase EZH2, and its regulators JARID2 and NDY1/KDM2B repress GFI1, a transcriptional repressor of the major immediate-early promoter (MIEP) of HCMV. Knocking down EZH2, NDY1/KDM2B or JARID2 relieves the repression and results in the upregulation of GFI1. During infection, the incoming HCMV rapidly downregulates the GFI1 mRNA and protein in both wild-type cells and in cells in which EZH2, NDY1/KDM2B or JARID2 were knocked down. However, since the pre-infection levels of GFI1 in the latter cells are significantly higher, the virus fails to downregulate it to levels permissive for MIEP activation and viral infection. Following the EZH2-NDY1/KDM2B-JARID2-independent downregulation of GFI1 in the early stages of infection, the virus also initiates an EZH2-NDY1/ΚDM2Β-JARID2-dependent program that represses GFI1 throughout the infection cycle. The EZH2 knockdown also delays histone H3K27 trimethylation in the immediate early region of HCMV, which is accompanied by a drop in H3K4 trimethylation that may contribute to the shEZH2-mediated repression of the major immediate early HCMV promoter. These data show that HCMV uses multiple mechanisms to allow the activation of the HCMV MIEP and to prevent cellular mechanisms from blocking the HCMV replication program.</p></div

    NDY1/KDM2B, EZH2 and H3K27 tri-methylation are required for immediate-early gene transcription.

    No full text
    <p><b>A and B</b>. HFFs were lentivirally or retrovirally transduced with the indicated constructs and they were subsequently infected with HCMV (MOI 0.5). The cells were fixed 5 hours later and the percentage of IE1-expressing cells was measured by FACS analysis. The bars show the percentage of IE1-positive cells (mean ± SD). <b>C</b>. Comparison of IE1 expression in HCMV-infected HFFs, transduced with pLKO.1, pLKO.1-shEZH2 or pLKO.1-shNDY1/KDM2B, prior to the infection. Cells were infected with HCMV (MOI 0.5). Western blots of cell lysates harvested at the indicated time points, were probed with anti-IE1 or anti-actin (loading control) antibodies. <b>D</b>. HFFs were infected with HCMV (MOI 0.5 PFU/cell) before and after a 30 minute pretreatment with the EZH2 inhibitor DZNep. The Western blotting shows the expression of EZH2 and IE1 in untreated and DZNep-pretreated cells at 24 hours from the start of the infection. <b>E</b>. HFFs were infected with HCMV (MOI 0.5 PFU/cell) before and after a 30-minute pretreatment with the EZH2 inhibitor DZNep. The infected cells were monitored by light microscopy 5 days later. In addition, they were stained for IE1 and counterstained with DAPI at 5 hours post-infection, and they were analyzed by epifluoerescence microscopy. Bar = 100 µm. <b>F</b>. The progeny virus harvested from the DZNep-treated and untreated cells as in D, 5 days after infection, was titrated by standard viral plaque assays. The bars show the viral titers (mean ± SD).</p

    Infection by HCMV depends on the downregulation of GFI1, a repressor of immediate-early gene transcription.

    No full text
    <p>Model summarizing the data on the interaction between the virus and the host. (Panel A) This panel describes the infection of wild type HFFs. The incoming virus rapidly degrades GFI1 to allow the activation of the MIEP of HCMV, and viral infection. In addition, virus infection alters the expression of NDY1/KDM2B, EZH2, JARID2 and JMJD3. The solid lines from these molecules to GFI1 indicate that they actively repress GFI1 both before and after infection, although due to HCMV-induced changes in their expression, the repression is enhanced after infection. (Panel B, Left) The repression of GFI1 in uninfected cells was blocked by the knockdown of NDY1/KDM2B, EZH2 or JARID2 and by the overexpression of JMJD3, resulting in significant up-regulation of GFI1 (dotted lines). (Panel B, Right) describes the infection of HFFs in the left side of panel B. The virus continues to degrade GFI1. However, the degradation of GFI1 by the virus is insufficient to downregulate it to levels that allow the activation of the MIEP and viral infection.</p
    corecore