120 research outputs found

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio

    Induction and migration of cryptic/defective Salmonella enterica prophages as a consequence of infection with lytic phages is an additional factor in stability of a coevolutionary vector

    Get PDF
    The influence of infection of natural isolates of Salmonella enterica with lytic (nonlysogenic) phages on the expression of resident cryptic or defective prophages in host bacteria was studied. The induction of defective/cryptic phages after infection with nonlysogenic phages and packaging of bacterial chromosomal fragments in capsids of defective phages is demonstrated. This may lead to migration and wide distribution of both the genomes of defective phages per se and various fragments of the bacterial chromosome (including pathogenic islands) in new bacterial strains with concomitant change of their properties, the acquired new features of pathogenicity among them.This work was supported by EC PhageVet-P (contract no. FOOD-CT-2005-007224) and by the Russian Foundation for Basic Research (grant no. 08-04-00162-a). We gratefully acknowledge the support of organizations presenting the grants.info:eu-repo/semantics/publishedVersio

    The Landscape of Immune Microenvironments in Racially Diverse Breast Cancer Patients

    Get PDF
    Background: Immunotherapy is a rapidly evolving treatment option in breast cancer; However, the breast cancer immune microenvironment is understudied in Black and younger (<50 years) patients. Methods: We used histologic and RNA-based immunoprofiling methods to characterize the breast cancer immune landscape in 1,952 tumors from the Carolina Breast Cancer Study (CBCS), a population-based study that oversampled Black (n ¼ 1,030) and young women (n ¼ 1,039). We evaluated immune response leveraging markers for 10 immune cell populations, compared profiles to those in The Cancer Genome Atlas (TCGA) Project [n ¼ 1,095 tumors, Black (n ¼ 183), and young women (n ¼ 295)], and evaluated in association with clinical and demographic variables, including recurrence. Results: Consensus clustering identified three immune clusters in CBCS (adaptive-enriched, innate-enriched, or immune-quiet) that varied in frequency by race, age, tumor grade and subtype; however, only two clusters were identified in TCGA, which were predominantly comprised of adaptive-enriched and innate-enriched tumors. In CBCS, the strongest adaptive immune response was observed for basal-like, HER2-positive (HER2þ), triple-negative breast cancer (TNBC), and high-grade tumors. Younger patients had higher proportions of adaptive-enriched tumors, particularly among estrogen receptor (ER)-negative (ER-) cases. Black patients had higher frequencies of both adaptive-enriched and innate-enriched tumors. Immune clusters were associated with recurrence among ER- tumors, with adaptive-enriched showing the best and innate-enriched showing the poorest 5-year recurrence-free survival. Conclusions: These data suggest that immune microenvironments are intricately related to race, age, tumor subtype, and grade. Impact: Given higher mortality among Black and young women, more defined immune classification using cell-type–specific panels could help explain higher recurrence and ultimately lead to target-able interventions

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe

    The Physical Processes of CME/ICME Evolution

    Get PDF
    corecore