67 research outputs found

    A Tandem Enol Silane Formation-Mukaiyama Aldol Reaction Mediated by TMSOTf

    Get PDF
    A slight excess of silyl trifluoromethanesulfonate mediates a tandem enol silane formation-Mukaiyama aldol reaction in the presence of Hunig’s base. Preformation of the enol silane is unnecessary for efficient reactions, which proceed in 75–97% yield for the addition of aryl methyl ketones and acetate esters to non-enolizable aldehydes. Mechanistic data suggests that free amine is crucial for full conversion

    Trimethylsilyl Trifluoromethanesulfonate- Accelerated Addition of Catalytically Generated Zinc Acetylides to Aldehydes

    Get PDF
    In the presence of TMSOTf, a wide variety of terminal acetylenes add rapidly and efficiently to aldehydes via a catalytically generated zinc acetylide. In the absence of TMSOTf, no reaction is observed under otherwise identical conditions

    One-Pot Enol Silane Formation-Mukaiyama Aldol-Type Addition to Dimethyl Acetals Mediated by TMSOTf

    Get PDF
    Various ketones, esters, amides, and thioesters add in high yield to dimethyl acetals in the presence of silyl trifluoromethanesulfonates and an amine base. Acetals derived from aryl, unsaturated, and aliphatic aldehydes are all effective substrates. The reaction proceeds in a single reaction flask, with no purification of the intermediate enol silane necessary

    Silyl triflate-accelerated additions of catalytically generated zinc acetylides to N-phenyl nitrones

    Get PDF
    Terminal alkynes readily form zinc acetylides in the presence of iPr2NEt and 20 mol% ZnBr2, then attack N-phenyl nitrones activated by trimethylsilyl trifluoromethanesulfonate. Deprotection with aqueous acid yields the N-hydroxyl propargylamine. Yields are generally high for nitrones derived from aromatic aldehydes. Control experiments suggest that the silyl triflate has a significant accelerating effect upon the reaction

    Friedel–Crafts hydroxyalkylation of indoles mediated by trimethylsilyl trifluoromethanesulfonate

    Get PDF
    Indoles and N-alkylindoles undergo Friedel–Crafts addition to aldehydes in the presence of trimethylsilyl trifluoromethanesulfonate and a trialkylamine to produce 3-(1- silyloxyalkyl)indoles. Neutralization of the reaction mixture with pyridine followed by deprotection under basic conditions with tetrabutylammonium fluoride provides the 1:1 adduct as the free alcohol. This method prevents spontaneous conversion of the desired products to the thermodynamically favored bisindolyl(aryl)methanes, a process typically observed when indoles are reacted with aldehydes under acidic conditions

    One-Pot Synthesis of 2-Methylfurans from 3- (Trimethylsilyl)propargyl Acetates Promoted by Trimethylsilyl Trifluoromethanesulfonate

    Get PDF
    In the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and triethylamine, 3-(trimethylsilyl)propargyl carboxylates undergo a one-pot alkylation-cyclization- desilylation reaction with ketones to produce 2-methylfurans. Alkylation at 0 °C in methylene chloride, followed by acid-catalyzed cyclization at room temperature, provides the furans in 52-86% yield. Cyclization and desilylation appear to be promoted by triflic acid generated in situ from the exposure of the reaction mixture to water upon completion of the initial substitution reaction

    One-Pot Enol Silane Formation-Alkylation of Ketones with Propargyl Carboxylates Promoted by Trimethylsilyl Trifluoromethanesulfonate

    Get PDF
    Ketones readily undergo conversion to enol silanes in the presence of trialkylamine base and trimethylsilyl trifluoromethanesulfonate (TMSOTf) and add to propargyl cations to yield b-alkynyl ketones. The propargyl cations are generated in the same reaction flask through the TMSOTf-promoted ionization of propargyl acetates or propargyl propionates. A range of enol silane precursors and propargyl carboxylates reacts efficiently (20 examples, up to 99% yield). Cyclization of a representative product in the presence of TMSOTf provided 61% yield of the trisubstituted furan

    Chalcone and Cinnamate Synthesis via One-Pot Enol Silane Formation-Mukaiyama Aldol Reactions of Ketones and Acetate Esters

    Get PDF
    Aryl alkyl ketones, acetate esters, and acetamides undergo facile one-pot enol silane formation, Mukaiyama aldol addition, and dehydrosilyloxylation in the presence of an amine base and excess trimethylsilyl trifluoromethanesulfonate. The chalcone and cinnamate products are generally recovered in high yield. The relative stoichiometry of the trimethylsilyl trifluoromethanesulfonate and amine base reagents determines whether the reaction yields the β- silyloxy carbonyl product or the α, β -unsaturated carbonyl

    One-pot silyl ketene imine formation-nucleophilic addition reactions of acetonitrile with acetals and nitrones

    Get PDF
    Trimethylsilyl trifluoromethanesulfonate (TMSOTf) and a trialkylamine base promote the conversion of acetonitrile to its silyl ketene imine in situ when acetonitrile is employed as solvent. Residual TMSOTf acts as a Lewis acid catalyst to activate acetals and nitrones in the reaction mixture, yielding β-methoxynitriles and β-(silyloxy)aminonitriles, respectively. Some reaction products undergo elimination under the reaction conditions to provide the α,β-unsaturated nitrile directly

    One-Pot Enol Silane Formation-Mukaiyama–Mannich Addition of Ketones, Amides, and Thioesters to Nitrones in the Presence of Trialkylsilyl Trifluoromethanesulfonates

    Get PDF
    Ketones, amides, and thioesters form enol silanes and add to N-phenylnitrones in one pot in the presence of trimethylsilyl trifluoromethanesulfonate and trialkylamine. The reaction is general to a range of silyl trifluoromethanesulfonates and N-phenylnitrones. The b-(silyloxy)amino carbonyl products are stable to chromatography and can be isolated in 63-99% yield
    • …
    corecore