150 research outputs found

    Relative Pitch Perception and the Detection of Deviant Tone Patterns.

    Get PDF
    Most people are able to recognise familiar tunes even when played in a different key. It is assumed that this depends on a general capacity for relative pitch perception; the ability to recognise the pattern of inter-note intervals that characterises the tune. However, when healthy adults are required to detect rare deviant melodic patterns in a sequence of randomly transposed standard patterns they perform close to chance. Musically experienced participants perform better than naïve participants, but even they find the task difficult, despite the fact that musical education includes training in interval recognition.To understand the source of this difficulty we designed an experiment to explore the relative influence of the size of within-pattern intervals and between-pattern transpositions on detecting deviant melodic patterns. We found that task difficulty increases when patterns contain large intervals (5-7 semitones) rather than small intervals (1-3 semitones). While task difficulty increases substantially when transpositions are introduced, the effect of transposition size (large vs small) is weaker. Increasing the range of permissible intervals to be used also makes the task more difficult. Furthermore, providing an initial exact repetition followed by subsequent transpositions does not improve performance. Although musical training correlates with task performance, we find no evidence that violations to musical intervals important in Western music (i.e. the perfect fifth or fourth) are more easily detected. In summary, relative pitch perception does not appear to be conducive to simple explanations based exclusively on invariant physical ratios

    Interplay between cell adhesion and growth factor receptors: from the plasma membrane to the endosomes

    Get PDF
    The emergence of multicellular animals could only take place once evolution had produced molecular mechanisms for cell adhesion and communication. Today, all metazoans express integrin-type adhesion receptors and receptors for growth factors. Integrins recognize extracellular matrix proteins and respective receptors on other cells and, following ligand binding, can activate the same cellular signaling pathways that are regulated by growth factor receptors. Recent reports have indicated that the two receptor systems also collaborate in many other ways. Here, we review the present information concerning the role of integrins as assisting growth factor receptors and the interplay between the receptors in cell signaling and in the orchestration of receptor recycling

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units

    Full text link

    Molecular architecture and function of the hemidesmosome

    Get PDF

    In vitro models of cancer stem cells and clinical applications

    Full text link
    • …
    corecore