421 research outputs found

    The Meteorological Effects of the Kuwait Oil Fires

    Get PDF

    Diagnostics of an O2–He RF Atmospheric Plasma Discharge by Spectral Emission

    Get PDF
    In this paper optical emission spectroscopy (OES) is used as a Diagnostic technique for the measurement of atomic and molecular spectral emissions generated using a helium rf industrial atmospheric plasma jet system. The OES of neutral atomic spectral lines and molecular bands are investigated over a range of plasma process parameters.Wavelength resolve optical emission profiles suggest that the emission of helium’s spectral lines shows that the high energy electrons have a larger influence than helium metastables on the overall spectral emission. Furthermore, the experimental data indicates that the use of high helium flow rates, in any confined open air plasma discharge, limits thesignificance of air impurities, e.g., nitrogen, for the creation and sustainability of plasma discharges in helium–oxygen gas chemistry

    Hijacking Journalism: Legitimacy and Metajournalistic Discourse in Right-Wing Podcasts

    Get PDF
    Whereas personal expression has become a core practice of journalism whose merits can include greater attention to context and interpretative analysis, these freedoms from the constraints of traditional broadcast conventions can pose serious risks, including the ideological hijacking of journalism by partisan actors. In popular right-wing podcasts, such as those hosted by Ben Shapiro and Dan Bongino, the element of opinion amplifies the tendency of the podcast medium to relegate news to a secondary concern behind the emotional impact. Not only do podcasters like Shapiro and Bongino contribute to a fractured media environment of hyper-partisan news and commentary, but they also utilize social media platforms and transmedia networks to undermine traditional journalism and replace it with an alternative conservative media ecosystem - a multiplatform, full-service clearinghouse of news and commentary afforded by the publishing capabilities of the internet and the distribution algorithms of social media platforms like Facebook. This study charts the evolution of conservative audio production, from the influential work of talk radio star Rush Limbaugh through the latest innovations by conservative podcasters, as exemplified by Shapiro and Bongino. Our study builds on previous scholarship on metajournalistic discourse to examine how right-wing podcasters use exclusionary language to delegitimize the institution of journalism and offer a self-contained, ideologically conservative version of journalism as a replacement

    Psychiatry and molecular genetics: a paradigm shift.

    Get PDF
    The late 20th century is witnessing an explosion of biomedical knowledge in the discipline of molecular genetics. In this regard many medical specialties will be transformed in terms of diagnosis and treatment. The technology and the recent clinical research in psychiatry is one of these

    Spatial Associations Between Contaminated Land and Socio Demographics in Ghana

    Full text link
    Associations between contaminated land and socio demographics are well documented in high-income countries. In low- and middle-income countries, however, little is known about the extent of contaminated land and possible demographic correlations. This is an important yet sparsely researched topic with potentially significant public health implications as exposure to pollution remains a leading source of morbidity and mortality in low-income countries. In this study, we review the associations between several socio demographic factors (population, population density, unemployment, education, and literacy) and contaminated sites in Ghana. Within this context, both correlation and association intend to show the relationship between two variables, namely contaminated sites and socio demographics. Aggregated district level 2010 census data from Ghana Statistical Service and contaminated site location data from Pure Earth’s Toxic Sites Identification Program (TSIP) were spatially evaluated using the number of sites per kilometer squared within districts as the unit of measurement. We found a low to medium positive correlation (ρ range: 0.285 to 0.478) between contaminated sites and the following socio demographics: higher population density, higher unemployment, greater education, and higher literacy rate. These results support previous studies and suggest that several socio demographic factors may be reasonably accurate predictors of contaminated site locations. More research and targeted data collection is needed to better understand these associations with the ultimate goal of developing a predictive model

    Investigation of a scalable barrel atmospheric plasma reactor for the treatment of polymer particles

    Get PDF
    This study reports on the performance of a scalable barrel atmospheric plasma system for the treatment of polymer particles. A novel feature of the barrel system design is the use of a biased electrode, which also acts as the roller for the glass barrel. The plasma is generated using either helium or helium / oxygen gas mixtures. The reactor was used to activate 20 g batches of silicone, polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate (PET) particles, each with diameters in the range 3 to 5 mm. The effect of plasma treatment time and gas flow rate on the water contact angle of the treated polymer particles was examined. The polymer water contact angles decreased from up to 140° to less than 10° after the barrel plasma treatment (polymer dependent). X-ray photoelectron spectroscopy (XPS) analysis is used to monitor the effect of the plasma treatment on both PET and silicone polymer particles. Optical emission spectroscopy (OES) was used as a diagnostic tool to monitor changes in atomic and molecular species intensity with experimental conditions. Emission lines of helium, oxygen and molecular bands of OH, N2 and N2+ were monitored and correlated with their spatial distribution within the plasma chamber. Electrical characterisation studies demonstrated an increase in plasma power with increasing input voltage and helium flow rate. The heating effect of the plasma was monitored using an infrared thermographic camera, the maximum barrel temperature after 30 minutes treatment found to be 29°C. While the current barrel plasma system design can treat 20 g of polymer the system design has the potential to be readily scalable for the activation of larger batches of particles

    Laser machined macro and micro structures on glass for enhanced light trapping in solar cells

    Get PDF
    In order to increase the efficiency of solar cell modules it is necessary to make the optimum use of light incident upon them. Much research has been done on improving light absorption through front surface texturisation and light trapping schemes. Laser light is commonly used in industry for various applications including marking and texturisation. By controlling laser parameters, it is possible to tailor macro and micro structures in most materials. The CO2 laser used in this investigation emits radiation at 10.6 ÎŒm with the ability to pulse in the micro-second range. The laser was used to ablate grooved textures in the fused quartz material, used in this study as the light trapping medium, following which an analysis of the effects of the laser parameters on the texture geometry and surface morphology was performed through a combination of cross sectioning and scanning electron microscopy. Transmission through the textured glass was improved for most samples after acid etching. The light trapping effects of the best performing textures were analysed by investigating the effects on a silicon solar cell’s performance at varying angles of incidence. Results indicated a significant increase in light trapping when light was incident at acute angles. For an angle of incidence of 10◩ a relative increase in efficiency of up to 51 % was observed

    Naturally Occurring Potentially Harmful Elements in Groundwater in Makueni County, South-Eastern Kenya: Effects on Drinking Water Quality and Agriculture

    Get PDF
    Makueni County is located in the semi-arid south-eastern Kenya region characterized by unreliable rainfall and limited surface water resources. This necessitates a high reliance on groundwater for domestic and agricultural use. In this paper, we report on the physico-chemical characteristics of 20 drinking water sources (boreholes, shallow wells, streams, and tap water) collected during the dry season (November 2018), the geochemical processes controlling their composition, and their suitability for drinking water and irrigation. Of all the physico-chemical parameters analysed, the concentrations of total dissolved solids, hardness, electrical conductivity, magnesium, calcium, chloride, and fluoride exceeded the permissible drinking water limits set by both the World Health Organization (WHO) and Kenya Bureau of Standards (KEBS) in up to 55% of the samples. The dominant ions reflect the high salinity in the water that ranged from very high to extreme in up to 50% of samples. The northern region shows the highest concentrations of the dominant parameters. The water type is predominantly Ca-Mg-HCO3 with a trend to Ca-Mg-Cl-SO4. Rock weathering and evaporation are suggested to be the primary controls of groundwater geochemical characteristics. High salinity and fluoride, which are associated with reported undesirable taste and gastrointestinal upsets, as well as cases of dental fluorosis are some of the effects of consuming groundwater in the region. These two parameters can be attributed to the weathering of biotite gneisses, granitoid gneisses, migmatites, and basaltic rocks that occur in the area. The high salinity and alkalinity of most of the samples analysed, renders the water unsuitable for irrigation in the study area

    HDAC1 interacts with the p50 NF-ÎșB subunit via its nuclear localization sequence to constrain inflammatory gene expression

    Get PDF
    The NF-ÎșB p50 subunit is an important regulator of inflammation, with recent experimental evidence to support it also having a tumor suppressor role. Classically, p50 functions in heterodimeric form with the RelA (p65) NF-ÎșB subunit to activate inflammatory genes. However, p50 also forms homodimers which actively repress NF-ÎșB-dependent inflammatory gene expression and exert an important brake on the inflammatory process. This repressive activity of p50:p50 is thought to be in part mediated by an interaction with the epigenetic repressor protein Histone Deacetylase 1 (HDAC1). However, neither the interaction of p50 with HDAC1 nor the requirement of HDAC1 for the repressive activities of p50 has been well defined. Here we employed in silico prediction with in vitro assays to map sites of interaction of HDAC1 on the p50 protein. Directed mutagenesis of one such region resulted in almost complete loss of HDAC1 binding to p50. Transfected mutant p50 protein lacking the putative HDAC1 docking motif resulted in enhanced cytokine and chemokine expression when compared with cells expressing a transfected wild type p50. In addition, expression of this mutant p50 was associated with enhanced chemoattraction of neutrophils and acetylation of known inflammatory genes demonstrating the likely importance of the p50:HDAC1 interaction for controlling inflammation. These new insights provide an advance on current knowledge of the mechanisms by which NF-ÎșB-dependent gene transcription are regulated and highlight the potential for manipulation of p50:HDAC1 interactions to bring about experimental modulation of chronic inflammation and pathologies associated with dysregulated neutrophil accumulation and activation

    Potential fluoride exposure from selected food crops grown in high fluoride soils in the Makueni County, south-eastern Kenya

    Get PDF
    Makueni County, located in south-eastern Kenya, faces challenges such as limited potable water and restricted food supplies as the result of semi-aridity. High fluoride (F) concentrations have been reported in drinking water with resultant dental fluorosis affecting the local population. To determine the potential F exposure through the consumption of food crops grown in the area, F concentration was assessed in the main five locally grown and consumed crops. Additionally, the water-soluble F fraction was determined from 30 soil samples with mineralogical determination of 20 samples. Mean F concentration in the food crops was in the order; 700, 288, 71.2, 36.6, and 29 mg/kg in kale, cowpeas leaves, green grams, cowpeas (legume portion), and maize, respectively. The F concentration in farm soils ranged from 0 to 3.47 mg/kg (mean of 0.87 mg/kg) and showed a significant strong positive correlation (p = 0.03, r = 0.89) with F values in the crops. Apatite, muscovite, and biotite were identified as the F-rich minerals present. While considering two hypothetical F absorption fractions (75 and 100%), the estimated average daily dose (EADD) of F from consuming the crops ranged between 0.004 and 65.17 mg/kg/day where the highest values were from the vegetables. Most of these values were higher than the F reference dose (RfD) of 0.06 mg/kg. The estimated EADD values of several hypothetical meals prepared from the analyzed crops revealed that steamed kale and maize porridge pose the highest health risk of F associated diseases to the local population, whereas boiled cowpeas pose no health risk. Children, due to their higher daily energy requirement and low body weight, were the most vulnerable group at risk of high daily F intake relative to the RfD. These results suggest that consumption of the analyzed food crops in Makueni County may significantly contribute to F related diseases in the local population. This creates a food security issue for the area because of the potential health risks associated with these crops which are highly relied upon in the semi-arid area with a limited selection of food crops available and viable to grow
    • 

    corecore