40 research outputs found

    Radiometric measurements of the microwave emissivity of foam

    Get PDF
    Includes bibliographical references.Radiometric measurements of the microwave emissivity of foam were conducted during May 2000 at the Naval Research Laboratory's Chesapeake Bay Detachment using radiometers operating at 10.8 and 36.5 GHz. Horizontal and vertical polarization measurements were performed at 36.5 GHz; horizontal, vertical, +45°, ­45°, left-circular, and right-circular polarization measurements were obtained at 10.8 GHz. These measurements were carried out over a range of incidence angles from 30° to 60°. Surface foam was generated by blowing compressed air through a matrix of gas-permeable tubing supported by an aluminum frame and floats. Video micrographs of the foam were used to measure bubble size distribution and foam layer thickness. A video camera was boresighted with the radiometers to determine the beam-fill fraction of the foam generator. Results show emissivities that were greater than 0.9 and approximately constant in value over the range of incidence angles for vertically polarized radiation at both 10.8 and 36.5 GHz, while emissivities of horizontally polarized radiation showed a gradual decrease in value as incidence angle increased. Emissivities at +45°, ­45°, left-circular, and right-circular polarizations were all very nearly equal to each other and were in turn approximately equal to the average values of the horizontal and vertical emissivities in each case.This work was sponsored by the Department of the Navy, Office of Naval Research under Award N0014-00-1-280 to the University of Massachusetts, Award N00014-00-0152 to the University of Washington, and Award N0001400WX21032 to the Naval Research Laboratory

    Structure and diversity trends at Fagus timberline in central Italy

    Get PDF
    Structure and diversity trends (β-diversity and species richness) across the Fagus sylvatica timberline in the central Apennines were investigated. Twenty-three belt transects were laid out across the upper forest line in the Simbruini Mountains. Number of species, plant cover, and height of different layers were recorded in each quadrat. The moving split-window method was used to detect ecological discontinuities across beech timberlines. We show how β-diversity changes along timberlines and we put forward some hypotheses about the possible dynamics of these transitions. Fourmodels resulted from the analysis of β-diversity trends: two β-diversity peaks indicated a transition where shrubs, mainly Juniperus communis ssp. alpina, (two high peaks) or beech scrub (two small peaks) formed a mantle that could allow forest expansion. One high β-diversity peak referred to an anthropo-zoogenic boundary maintained by disturbance, without the presence of a mantle. A little peak indicated a gradual transition at the upper potential timberline limit where beech forest had lost its typical floristical composition and structural characteristics

    Radiometric Measurements of the Microwave Emissivity of Foam

    No full text
    Abstract-Radiometric measurements of the microwave emissivity of foam were conducted during May 2000 at the Naval Research Laboratory's Chesapeake Bay Detachment using radiometers operating at 10.8 and 36.5 GHz. Horizontal and vertical polarization measurements were performed at 36.5 GHz; horizontal, vertical, +45 , 45 , left-circular, and right-circular polarization measurements were obtained at 10.8 GHz. These measurements were carried out over a range of incidence angles from 30 to 60 . Surface foam was generated by blowing compressed air through a matrix of gas-permeable tubing supported by an aluminum frame and floats. Video micrographs of the foam were used to measure bubble size distribution and foam layer thickness. A video camera was boresighted with the radiometers to determine the beam-fill fraction of the foam generator. Results show emissivities that were greater than 0.9 and approximately constant in value over the range of incidence angles for vertically polarized radiation at both 10.8 and 36.5 GHz, while emissivities of horizontally polarized radiation showed a gradual decrease in value as incidence angle increased. Emissivities at +45 , 45 , left-circular, and right-circular polarizations were all very nearly equal to each other and were in turn approximately equal to the average values of the horizontal and vertical emissivities in each case
    corecore