9 research outputs found

    Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species.

    Get PDF
    Mosquito age and species identification is a crucial determinant of the efficacy of vector control programmes. Near-infrared spectroscopy (NIRS) has previously been applied successfully to rapidly, non-destructively, and simultaneously determine the age and species of freshly anesthetized African malaria vectors from the Anopheles gambiae s.l. species complex: An. gambiae s. s. and Anopheles arabiensis. However, this has only been achieved on freshly-collected specimens and future applications will require samples to be preserved between field collections and scanning by NIRS. In this study, a sample preservation method (RNAlater(®)) was evaluated for mosquito age and species identification by NIRS against scans of fresh samples. Two strains of An. gambiae s.s. (CDC and G3) and two strains of An. arabiensis (Dongola, KGB) were reared in the laboratory while the third strain of An. arabiensis (Ifakara) was reared in a semi-field system. All mosquitoes were scanned when fresh and rescanned after preservation in RNAlater(®) for several weeks. Age and species identification was determined using a cross-validation. The mean accuracy obtained for predicting the age of young (<7 days) or old (≥ 7 days) of all fresh (n = 633) and all preserved (n = 691) mosquito samples using the cross-validation technique was 83% and 90%, respectively. For species identification, accuracies were 82% for fresh against 80% for RNAlater(®) preserved. For both analyses, preserving mosquitoes in RNAlater(®) was associated with a highly significant reduction in the likelihood of a misclassification of mosquitoes as young or old using NIRS. Important to note is that the costs for preserving mosquito specimens with RNAlater(®) ranges from 3-13 cents per insect depending on the size of the tube used and the number of specimens pooled in one tube. RNAlater(®) can be used to preserve mosquitoes for subsequent scanning and analysis by NIRS to determine their age and species with minimal costs and with accuracy similar to that achieved from fresh insects. Cold storage availability allows samples to be stored longer than a week after field collection. Further study to develop robust calibrations applicable to other strains from diverse ecological settings is recommended

    Near-infrared spectroscopy as a complementary age grading and species identification tool for African malaria vectors

    Get PDF
    Near-infrared spectroscopy (NIRS) was recently applied to age-grade and differentiate laboratory reared Anopheles gambiae sensu strico and Anopheles arabiensis sibling species of Anopheles gambiae sensu lato complex. In this study, we report further on the accuracy of this tool for simultaneously estimating the age class and differentiating the morphologically indistinguishable An. gambiae s.s. and An. arabiensis from semi-field releases and wild populations. Nine different ages (1, 3, 5, 7, 9, 11, 12, 14, 16 d) of An. arabiensis and eight different ages (1, 3, 5, 7, 9, 10, 11, 12 d) of An. gambiae s.s. maintained in 250 × 60 × 40 cm cages within a semi-field large-cage system and 105 wild-caught female An. gambiae s.l., were included in this study. NIRS classified female An. arabiensis and An. gambiae s.s. maintained in semi-field cages as <7 d old or ≥7 d old with 89% (n = 377) and 78% (n = 327) accuracy, respectively, and differentiated them with 89% (n = 704) accuracy. Wild caught An. gambiae s.l. were identified with 90% accuracy (n = 105) whereas their predicted ages were consistent with the expected mean chronological ages of the physiological age categories determined by dissections. These findings have importance for monitoring control programmes where reduction in the proportion of older mosquitoes that have the ability to transmit malaria is an important outcome

    Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species.

    Get PDF
    BACKGROUND: Mosquito age and species identification is a crucial determinant of the efficacy of vector control programmes. Near-infrared spectroscopy (NIRS) has previously been applied successfully to rapidly, non-destructively, and simultaneously determine the age and species of freshly anesthetized African malaria vectors from the Anopheles gambiae s.l. species complex: An. gambiae s. s. and Anopheles arabiensis. However, this has only been achieved on freshly-collected specimens and future applications will require samples to be preserved between field collections and scanning by NIRS. In this study, a sample preservation method (RNAlater(®)) was evaluated for mosquito age and species identification by NIRS against scans of fresh samples. METHODS: Two strains of An. gambiae s.s. (CDC and G3) and two strains of An. arabiensis (Dongola, KGB) were reared in the laboratory while the third strain of An. arabiensis (Ifakara) was reared in a semi-field system. All mosquitoes were scanned when fresh and rescanned after preservation in RNAlater(®) for several weeks. Age and species identification was determined using a cross-validation. RESULTS: The mean accuracy obtained for predicting the age of young (<7 days) or old (≥ 7 days) of all fresh (n = 633) and all preserved (n = 691) mosquito samples using the cross-validation technique was 83% and 90%, respectively. For species identification, accuracies were 82% for fresh against 80% for RNAlater(®) preserved. For both analyses, preserving mosquitoes in RNAlater(®) was associated with a highly significant reduction in the likelihood of a misclassification of mosquitoes as young or old using NIRS. Important to note is that the costs for preserving mosquito specimens with RNAlater(®) ranges from 3-13 cents per insect depending on the size of the tube used and the number of specimens pooled in one tube. CONCLUSION: RNAlater(®) can be used to preserve mosquitoes for subsequent scanning and analysis by NIRS to determine their age and species with minimal costs and with accuracy similar to that achieved from fresh insects. Cold storage availability allows samples to be stored longer than a week after field collection. Further study to develop robust calibrations applicable to other strains from diverse ecological settings is recommended

    Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species

    Get PDF
    BACKGROUND: Mosquito age and species identification is a crucial determinant of the efficacy of vector control programmes. Near-infrared spectroscopy (NIRS) has previously been applied successfully to rapidly, non-destructively, and simultaneously determine the age and species of freshly anesthetized African malaria vectors from the Anopheles gambiae s.l. species complex: An. gambiae s. s. and Anopheles arabiensis. However, this has only been achieved on freshly-collected specimens and future applications will require samples to be preserved between field collections and scanning by NIRS. In this study, a sample preservation method (RNAlater(®)) was evaluated for mosquito age and species identification by NIRS against scans of fresh samples. METHODS: Two strains of An. gambiae s.s. (CDC and G3) and two strains of An. arabiensis (Dongola, KGB) were reared in the laboratory while the third strain of An. arabiensis (Ifakara) was reared in a semi-field system. All mosquitoes were scanned when fresh and rescanned after preservation in RNAlater(®) for several weeks. Age and species identification was determined using a cross-validation. RESULTS: The mean accuracy obtained for predicting the age of young (<7 days) or old (≥ 7 days) of all fresh (n = 633) and all preserved (n = 691) mosquito samples using the cross-validation technique was 83% and 90%, respectively. For species identification, accuracies were 82% for fresh against 80% for RNAlater(®) preserved. For both analyses, preserving mosquitoes in RNAlater(®) was associated with a highly significant reduction in the likelihood of a misclassification of mosquitoes as young or old using NIRS. Important to note is that the costs for preserving mosquito specimens with RNAlater(®) ranges from 3-13 cents per insect depending on the size of the tube used and the number of specimens pooled in one tube. CONCLUSION: RNAlater(®) can be used to preserve mosquitoes for subsequent scanning and analysis by NIRS to determine their age and species with minimal costs and with accuracy similar to that achieved from fresh insects. Cold storage availability allows samples to be stored longer than a week after field collection. Further study to develop robust calibrations applicable to other strains from diverse ecological settings is recommended

    Evaluating RNA<it>later</it><sup>® </sup>as a preservative for using near-infrared spectroscopy to predict <it>Anopheles gambiae </it>age and species

    No full text
    Abstract Background Mosquito age and species identification is a crucial determinant of the efficacy of vector control programmes. Near-infrared spectroscopy (NIRS) has previously been applied successfully to rapidly, non-destructively, and simultaneously determine the age and species of freshly anesthetized African malaria vectors from the Anopheles gambiae s.l. species complex: An. gambiae s. s. and Anopheles arabiensis. However, this has only been achieved on freshly-collected specimens and future applications will require samples to be preserved between field collections and scanning by NIRS. In this study, a sample preservation method (RNAlater®) was evaluated for mosquito age and species identification by NIRS against scans of fresh samples. Methods Two strains of An. gambiae s.s. (CDC and G3) and two strains of An. arabiensis (Dongola, KGB) were reared in the laboratory while the third strain of An. arabiensis (Ifakara) was reared in a semi-field system. All mosquitoes were scanned when fresh and rescanned after preservation in RNAlater® for several weeks. Age and species identification was determined using a cross-validation. Results The mean accuracy obtained for predicting the age of young (later® preserved. For both analyses, preserving mosquitoes in RNAlater® was associated with a highly significant reduction in the likelihood of a misclassification of mosquitoes as young or old using NIRS. Important to note is that the costs for preserving mosquito specimens with RNAlater® ranges from 3-13 cents per insect depending on the size of the tube used and the number of specimens pooled in one tube. Conclusion RNAlater® can be used to preserve mosquitoes for subsequent scanning and analysis by NIRS to determine their age and species with minimal costs and with accuracy similar to that achieved from fresh insects. Cold storage availability allows samples to be stored longer than a week after field collection. Further study to develop robust calibrations applicable to other strains from diverse ecological settings is recommended.</p

    Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    No full text
    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.Peer reviewe
    corecore