98 research outputs found

    Justice Story, the Supreme Court, and the Obligation of Contract

    Get PDF

    Recent Cases

    Get PDF

    The complexity of Rhipicephalus (Boophilus) microplus genome characterised through detailed analysis of two BAC clones

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhipicephalus (Boophilus) microplus (Rmi) </it>a major cattle ectoparasite and tick borne disease vector, impacts on animal welfare and industry productivity. In arthropod research there is an absence of a complete Chelicerate genome, which includes ticks, mites, spiders, scorpions and crustaceans. Model arthropod genomes such as <it>Drosophila </it>and <it>Anopheles </it>are too taxonomically distant for a reference in tick genomic sequence analysis. This study focuses on the <it>de-novo </it>assembly of two <it>R. microplus </it>BAC sequences from the understudied <it>R microplus </it>genome. Based on available <it>R. microplus </it>sequenced resources and comparative analysis, tick genomic structure and functional predictions identify complex gene structures and genomic targets expressed during tick-cattle interaction.</p> <p>Results</p> <p>In our BAC analyses we have assembled, using the correct positioning of BAC end sequences and transcript sequences, two challenging genomic regions. Cot DNA fractions compared to the BAC sequences confirmed a highly repetitive BAC sequence BM-012-E08 and a low repetitive BAC sequence BM-005-G14 which was gene rich and contained short interspersed elements (SINEs). Based directly on the BAC and Cot data comparisons, the genome wide frequency of the SINE Ruka element was estimated. Using a conservative approach to the assembly of the highly repetitive BM-012-E08, the sequence was de-convoluted into three repeat units, each unit containing an 18S, 5.8S and 28S ribosomal RNA (rRNA) encoding gene sequence (rDNA), related internal transcribed spacer and complex intergenic region.</p> <p>In the low repetitive BM-005-G14, a novel gene complex was found between to 2 genes on the same strand. Nested in the second intron of a large 9 Kb <it>papilin </it>gene was a <it>helicase </it>gene. This <it>helicase </it>overlapped in two exonic regions with the <it>papilin</it>. Both these genes were shown expressed in different tick life stage important in ectoparasite interaction with the host. Tick specific sequence differences were also determined for the <it>papilin </it>gene and the protein binding sites of the 18S subunit in a comparison to <it>Bos taurus</it>.</p> <p>Conclusion</p> <p>In the absence of a sequenced reference genome we have assembled two complex BAC sequences, characterised novel gene structure that was confirmed by gene expression and sequencing analyses. This is the first report to provide evidence for 2 eukaryotic genes with exon regions that overlap on the same strand, the first to describe <it>Rhipicephalinae papilin</it>, and the first to report the complete ribosomal DNA repeated unit sequence structure for ticks. The Cot data estimation of genome wide sequence frequency means this research will underpin future efforts for genome sequencing and assembly of the <it>R. microplus </it>genome.</p

    Prediction of photoperiodic regulators from quantitative gene circuit models

    Get PDF
    Photoperiod sensors allow physiological adaptation to the changing seasons. The external coincidence hypothesis postulates that a light-responsive regulator is modulated by a circadian rhythm. Sufficient data are available to test this quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their lightsensitive proteins are thought to form an external coincidence sensor. We use 40 timeseries of molecular data to model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, the models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modelling makes this complexity explicit and may thus contribute to crop improvement

    6-hydroxydopamine-mediated release of norepinephrine increases faecal excretion of Salmonella enterica serovar Typhimurium in pigs

    Get PDF
    Salmonella enterica serovar Typhimurium is an animal and zoonotic pathogen of worldwide importance. In pigs, transport and social stress are associated with reactivation and spread of Salmonella Typhimurium infection. The stress-related catecholamine norepinephrine (NE) has been reported to activate growth and virulence factor expression in Salmonella; however the extent to which NE contributes to stress-associated salmonellosis is unclear. We studied the impact of releasing NE from endogenous stores during Salmonella Typhimurium infection of pigs by administration of 6-hydroxydopamine (6-OHDA), which selectively destroys noradrenergic nerve terminals. Treatment of pigs with 6-OHDA 7 or 16 days post-oral inoculation with Salmonella Typhimurium produced elevated plasma NE levels and transiently, but significantly, increased faecal excretion of the challenge strain. Oral administration of NE to Salmonella Typhimurium-infected pigs also transiently and significantly increased shedding; however pre-culture of the bacteria with NE did not alter the outcome of infection. Salmonella has been proposed to sense and respond to NE via a homologue of the adrenergic sensor kinase QseC. A ΔqseC mutant of Salmonella Typhimurium was consistently excreted in lower numbers than the parent strain post-oral inoculation of pigs, though not significantly so. 6-OHDA treatment of pigs infected with the ΔqseC mutant also increased faecal excretion of the mutant strain, albeit to a lesser extent than observed upon 6-OHDA treatment of pigs infected with the parent strain. Our data support the notion that stress-related catecholamines modulate the interaction of enteric bacterial pathogens with their hosts

    Parity-Violating Inelastic Electron-Proton Scattering at Low Q2Q^2 Above the Resonance Region

    Full text link
    We report the measurement of the parity-violating asymmetry for the inelastic scattering of electrons from the proton, at Q2=0.082Q^2 = 0.082 GeV2^2 and W=2.23 W = 2.23 GeV, above the resonance region. The result AInel=13.5±2.0(stat)±3.9(syst)A_{\rm Inel} = - 13.5 \pm 2.0 ({\rm stat}) \pm 3.9 ({\rm syst})~ppm agrees with theoretical calculations, and helps to validate the modeling of the γZ\gamma Z interference structure functions F1γZF_1^{\gamma Z} and F2γZF_2^{\gamma Z} used in those calculations, which are also used for determination of the two-boson exchange box diagram (γZ\Box_{\gamma Z}) contribution to parity-violating elastic scattering measurements. A positive parity-violating asymmetry for inclusive π\pi^- production was observed, as well as positive beam-normal single-spin asymmetry for scattered electrons and a negative beam-normal single-spin asymmetry for inclusive π\pi^- production.Comment: 18 pages, 9 figures, version accepted in Physical Review
    corecore