53 research outputs found

    Ikaros in T-Cell Leukemia

    Get PDF

    Pediatric High Risk Leukemia — Molecular Insights

    Get PDF
    Acute leukemia comprises of 31% of all cancers in children making it the most common childhood malignancy. Significant strides have been made in treatment, partly through risk stratification and intensified therapy. A number of subtypes remain at high risk for relapse and poor outcome, despite current therapies. Here we describe risk stratification and molecular diagnosis used to identify high risk leukemias and guide treatment. Specific cytogenetic alterations that contribute to high risk B and T cell acute lymphoblastic leukemia (ALL), as well as infant leukemia are discussed. Particular attention is given to genetic alterations in IKZF1, CRLF2, and JAK, that have been identified by whole genome sequencing and recently associated with Ph-like ALL. Ongoing studies of disease mechanisms and challenges in developing pre-clinical patient-derived xenograft models to evaluate therapies are discussed

    High CRLF2 expression associates with IKZF1 dysfunction in adult acute lymphoblastic leukemia without CRLF2 rearrangement.

    Get PDF
    Overexpression of cytokine receptor-like factor 2 (CRLF2) due to chromosomal rearrangement has been observed in acute lymphoblastic leukemia (ALL) and reported to contribute to oncogenesis and unfavorable outcome in ALL. We studied B-ALL and T-ALL patients without CRLF2 rearrangement and observed that CRLF2 is significantly increased in a subset of these patients. Our study shows that high CRLF2expression correlates with high-risk ALL markers, as well as poor survival. We found that the IKZF1-encoded protein, Ikaros, directly binds to the CRLF2 promoter and regulates CRLF2 expression in leukemia cells. CK2 inhibitor, which can increase Ikaros activity, significantly increases Ikaros binding in ALL cells and suppresses CRLF2 expression in an Ikaros-dependent manner. CRLF2 expression is significantly higher in patients with IKZF1 deletion as compared to patients without IKZF1 deletion. Treatment with CK2 inhibitor also results in an increase in IKZF1 binding to the CRLF2 promoter and suppression of CRLF2 expression in primary ALL cells. We further observed that CK2 inhibitor induces increased H3K9me3 histone modifications in the CRLF2 promoter in ALL cell lines and primary cells. Taken together, our results demonstrate that high expression of CRLF2 correlates with high-risk ALL and short survival in patients without CRLF2 rearrangement. Our results are the first to demonstrate that the IKZF1-encoded Ikaros protein directly suppresses CRLF2 expression through enrichment of H3K9me3 in its promoter region. Our data also suggest that high CRLF2 expression works with the IKZF1 deletion to drive oncogenesis of ALL and has significance in an integrated prognostic model for adult high-risk ALL

    Structural basis of colchicine-site targeting acylhydrazones active against multidrug-resistant acute lymphoblastic leukemia

    Get PDF
    Tubulin is one of the best validated anti-cancer targets, but most anti-tubulin agents have unfavorable therapeutic indexes. Here, we characterized the tubulin-binding activity, the mechanism of action, and the in vivo anti-leukemia efficacy of three 3,4,5-trimethoxy-N-acylhydrazones. We show that all compounds target the colchicine-binding site of tubulin and that none is a substrate of ABC transporters. The crystal structure of the tubulin-bound N-(1′-naphthyl)-3,4,5-trimethoxybenzohydrazide (12) revealed steric hindrance on the T7 loop movement of β-tubulin, thereby rendering tubulin assembly incompetent. Using dose escalation and short-term repeated dose studies, we further report that this compound class is well tolerated to >100 mg/kg in mice. We finally observed that intraperitoneally administered compound 12 significantly prolonged the overall survival of mice transplanted with both sensitive and multidrug-resistant acute lymphoblastic leukemia (ALL) cells. Taken together, this work describes promising colchicine-site-targeting tubulin inhibitors featuring favorable therapeutic effects against ALL and multidrug-resistant cell2195109CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP305896/2013-0; 301596/2017-414/08247-8; 17/14737-6We thank Ganadería Fernando Díaz for calf brains for tubulin purification. The authors acknowledge networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by nature - from natural products chemistry to drug discovery.” J.F.D. is a member of the CIB Intramural Program “Molecular Machines for Better Life” (MACBET). N.M.C. was supported by a fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 14/08247-8, and 17/14737-6). J.A.Y. received a Productivity fellowship from the Brazilian National Counsel of Technological and Scientific Development (CNPq 305896/2013-0 and 301596/2017-4). This work was supported in part by grants BFU2016-75319-R (AEI/FEDER, UE) (J.F.D.) from Ministerio de Economía y Competitividad. The crystal structure work was supported by grants from the Swiss National Science Foundation (31003A_166608, to M.O.S.) and by the COST action CM1407 (to M.O.S.). Part of the in vivo work was supported by R01CA209829 and R01CA213912, Hyundai Hope On Wheels Scholar Grant, Bear Necessities Pediatric Cancer Foundation, Alex’s Lemonade Stand Foundation, the Four Diamonds Fund of the Pennsylvania State University College of Medicine, and the John Wawrynovic Leukemia Research Scholar Endowment (to S.D.

    The novel Isatin analog KS99 targets stemness markers in acute myeloid leukemia

    Get PDF
    Leukemic stem cells are multipotent, self-renewing, highly proliferative cells that can withstand drug treatments. Although currently available treatments potentially destroy blast cells, they fail to eradicate leukemic progenitor cells completely. Aldehyde dehydrogenase and STAT3 are frequently up-regulated in pre-leukemic stem cells as well as in acute myeloid leukemia (AML) expressing the CD34+CD38− phenotype. The Isatin analog, KS99 has shown anticancer activity against multiple myeloma which may, in part, be mediated by inhibition of Bruton’s tyrosine kinase activation. Here we demonstrate that KS99 selectively targets leukemic stem cells with high aldehyde dehydrogenase activity and inhibits phosphorylation of STAT3. KS99 targeted cells co-expressing CD34, CD38, CD123, TIM-3, or CD96 immunophenotypes in AML, alone or in combination with the standard therapeutic agent cytarabine. AML with myelodysplastic-related changes was more sensitive than de novo AML with or without NPM1 mutation. KS99 treatment reduced the clonogenicity of primary human AML cells as compared to normal cord blood mononuclear cells. Downregulation of phosphorylated Bruton’s tyrosine kinase, STAT3, and aldehyde dehydrogenase was observed, suggesting interaction with KS99 as predicted through docking. KS99 with or without cytarabine showed in vivo preclinical efficacy in human and mouse AML animal models and prolonged survival. KS99 was well tolerated with overall negligible adverse effects. In conclusion, KS99 inhibits aldehyde dehydrogenase and STAT3 activities and causes cell death of leukemic stem cells, but not normal hematopoietic stem and progenitor cells

    Ikaros in hematopoiesis and leukemia

    No full text
    Ikaros is a gene whose activity is essential for normal hematopoiesis. Ikaros acts as a master regulator of lymphoid and myeloid development as well as a tumor suppressor. In cells, Ikaros regulates gene expression via chromatin remodeling. During the past 15 years tremendous advances have been made in understanding the role of Ikaros in hematopoiesis and leukemogenesis. In this Topic Highlights series of reviews, several groups of international experts in this field summarize the experimental data that is shaping the emerging picture of Ikaros function at the biochemical and cellular levels. The articles provide detailed analyses of recent scientific advancements and present models that will serve as a basis for future studies aimed at developing a better understanding of normal hematopoiesis and hematological malignancies and at accelerating the application of this knowledge in clinical practice
    corecore