152 research outputs found

    Revisiting G3BP1 as a RasGAP binding protein: sensitization of tumor cells to chemotherapy by the RasGAP 317-326 sequence does not involve G3BP1.

    Get PDF
    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317-326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317-326 sequence of RasGAP (TAT-RasGAP₃₁₇₋₃₂₆), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP₃₁₇₋₃₂₆ did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP₃₁₇₋₃₂₆ was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP

    Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography

    Full text link
    Using far field optical lithography, a single quantum dot is positioned within a pillar microcavity with a 50 nm accuracy. The lithography is performed in-situ at 10 K while measuring the quantum dot emission. Deterministic spectral and spatial matching of the cavity-dot system is achieved in a single step process and evidenced by the observation of strong Purcell effect. Deterministic coupling of two quantum dots to the same optical mode is achieved, a milestone for quantum computing.Comment: Modified version: new title, additional experimental data in figure

    Analysis of Elliptically Polarized Maximally Entangled States for Bell Inequality Tests

    Get PDF
    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.Comment: 8 page

    Electro-elastic tuning of single particles in individual self-assembled quantum dots

    Full text link
    We investigate the effect of uniaxial stress on InGaAs quantum dots in a charge tunable device. Using Coulomb blockade and photoluminescence, we observe that significant tuning of single particle energies (~ -0.5 meV/MPa) leads to variable tuning of exciton energies (+18 to -0.9 micro-eV/MPa) under tensile stress. Modest tuning of the permanent dipole, Coulomb interaction and fine-structure splitting energies is also measured. We exploit the variable exciton response to tune multiple quantum dots on the same chip into resonance.Comment: 16 pages, 4 figures, 1 table. Final versio

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Engineering of quantum dot photon sources via electro-elastic fields

    Full text link
    The possibility to generate and manipulate non-classical light using the tools of mature semiconductor technology carries great promise for the implementation of quantum communication science. This is indeed one of the main driving forces behind ongoing research on the study of semiconductor quantum dots. Often referred to as artificial atoms, quantum dots can generate single and entangled photons on demand and, unlike their natural counterpart, can be easily integrated into well-established optoelectronic devices. However, the inherent random nature of the quantum dot growth processes results in a lack of control of their emission properties. This represents a major roadblock towards the exploitation of these quantum emitters in the foreseen applications. This chapter describes a novel class of quantum dot devices that uses the combined action of strain and electric fields to reshape the emission properties of single quantum dots. The resulting electro-elastic fields allow for control of emission and binding energies, charge states, and energy level splittings and are suitable to correct for the quantum dot structural asymmetries that usually prevent these semiconductor nanostructures from emitting polarization-entangled photons. Key experiments in this field are presented and future directions are discussed.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Proučavanje 194Ir uhvatom termičkih neutrona I (d, p) reakcijom

    Get PDF
    Levels of 194Ir were studied using thermal neutron capture reaction. A pair spectrometer was used to measure the high-energy γ-ray spectrum from thermal-neutron capture in enriched 193Ir target over the energy range 4640 - 6100 keV. The low-energy γ-radiation from the reaction was studied with crystal diffraction spectrometers, and conversion electrons were observed with magnetic spectrometers. The high-sensitivity measurements at the Grenoble reactor, evaluated for transition energies up to 500 keV, are compared with lower-sensitivity measurements at the Wuerenlingen and Salaspils reactors. The comparison helped to obtain reliable isotopic identification for a number of 194Ir lines. The multipolarity admixtures for 29 γ-transitions were determined on the basis of conversion lines from different electron subshells. Prompt and delayed γ-γ coincidences were measured using semiconductor and scintillation detectors. The 193Ir(d,p) high-resolution spectra, observed with a magnetic spectrometer, are given. All these data contributed to establishing a detailed level scheme of 194Ir. Additional data and the interpretation of the results in terms of current models will be presented in a forthcoming paper.Proučavala su se stanja u 194Ir reakcijama 193Ir(n, γ) i 193Ir(d, p). Mjerenja uhvata termičkih neutrona načinjena su uz reaktore u Grenoblu, Wuerenlingenu i Salapsisu. Za mjerenja γ-zračenja visoke energije upotrebljavao se spektrometar parova, a za niske energije difraktometar. Konverzijske elektrone se mjerilo magnetskim spektrometrom. Mjerenja reakcije (d, p) visokog razlučivanja izvedena su magnetskim spektrometrom. Usporedbe tih mjerenja omogućile su pouzdano izotopno prepoznavanje prijelaza u 194 Ir, a spektri konverzijskih elektrona i određivanje multipolnosti prijelaza. Dobiveni su podaci osnova sheme raspada 194Ir

    Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    Get PDF
    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations
    • 

    corecore