133 research outputs found

    Thermodynamic Derivation of the Tsallis and R\'enyi Entropy Formulas and the Temperature of Quark-Gluon Plasma

    Get PDF
    We derive Tsallis entropy, Sq, from universal thermostat independence and obtain the functional form of the corresponding generalized entropy-probability relation. Our result for finite thermostats interprets thermodynamically the subsystem temperature, T1, and the index q in terms of the temperature, T, entropy, S, and heat capacity, C of the reservoir as T1 = T exp(-S/C) and q = 1 - 1/C. In the infinite C limit, irrespective to the value of S, the Boltzmann-Gibbs approach is fully recovered. We apply this framework for the experimental determination of the original temperature of a finite thermostat, T, from the analysis of hadron spectra produced in high energy collisions, by analyzing frequently considered simple models of the quark-gluon plasma.Comment: 4 pages 1 Figure PRL style, revised presentatio

    Holographic flavor on the Higgs branch

    Get PDF
    In this paper we study the holographic dual, in several spacetime dimensions, of the Higgs branch of gauge theories with fundamental matter. These theories contain defects of various codimensionalities, where the matter fields are located. In the holographic description the matter is added by considering flavor brane probes in the supergravity backgrounds generated by color branes, while the Higgs branch is obtained when the color and flavor branes recombine with each other. We show that, generically, the holographic dual of the Higgs phase is realized by means of the addition of extra flux on the flavor branes and by choosing their appropriate embedding in the background geometry. This suggests a dielectric interpretation in terms of the color branes, whose vacuum solutions precisely match the F- and D-flatness conditions obtained on the field theory side. We further compute the meson mass spectra in several cases and show that when the defect added has codimension greater than zero it becomes continuous and gapless.Comment: 59 pages, 1 figure;v2: references adde

    Development and validation of an electronic health records-based opioid use disorder algorithm by expert clinical adjudication among patients with prescribed opioids

    Get PDF
    Background: In the US, over 200 lives are lost from opioid overdoses each day. Accurate and prompt diagnosis of opioid use disorders (OUD) may help prevent overdose deaths. However, international classification of disease (ICD) codes for OUD are known to underestimate prevalence, and their specificity and sensitivity are unknown. We developed and validated algorithms to identify OUD in electronic health records (EHR) and examined the validity of OUD ICD codes. Methods: Through four iterations, we developed EHR-based OUD identification algorithms among patients who were prescribed opioids from 2014 to 2017. The algorithms and OUD ICD codes were validated against 169 independent “gold standard” EHR chart reviews conducted by an expert adjudication panel across four healthcare systems. After using 2014–2020 EHR for validating iteration 1, the experts were advised to use 2014–2017 EHR thereafter. Results: Of the 169 EHR charts, 81 (48%) were reviewed by more than one expert and exhibited 85% expert agreement. The experts identified 54 OUD cases. The experts endorsed all 11 OUD criteria from the Diagnostic and Statistical Manual of Mental Disorders-5, including craving (72%), tolerance (65%), withdrawal (56%), and recurrent use in physically hazardous conditions (50%). The OUD ICD codes had 10% sensitivity and 99% specificity, underscoring large underestimation. In comparison our algorithm identified OUD with 23% sensitivity and 98% specificity. Conclusions and relevance: This is the first study to estimate the validity of OUD ICD codes and develop validated EHR-based OUD identification algorithms. This work will inform future research on early intervention and prevention of OUD

    Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus

    Get PDF
    Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% for TBLH-BMD, and 39% for TB-LM, with a shared genetic component of 43%. We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: _WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5_. Variants in the _TOM1L2/SREBF1_ locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that _SREBF1_ is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass
    corecore