153 research outputs found

    Divergent Humoral Responses to 23-Valent Pneumococcal Polysaccharide Vaccine in Critically-Ill Burn and Neurosurgical Patients

    Get PDF
    INTRODUCTION: Critically ill hospitalized patients are at increased risk of infection so we assessed the immunogenicity of 23-valent pneumococcal polysaccharide vaccine (PPSV23) administered within six days of injury. METHODS: This prospective observational study compared the immunogenicity of PPSV23 among critically ill burn and neurosurgical patients at a tertiary, academic medical center. Patients received PPSV23 vaccination within six days of ICU admission per standard of care. Consent was obtained to measure concentrations of vaccine-specific IgG to 14 of 23 serotype capsule-specific IgG in serum prior to and 14-35 days following PPSV23. A successful immunologic response was defined as both a ā‰„2-fold rise in capsule-specific IgG from baseline and concentrations of \u3e1 mcg/mL to 10 of 14 measured vaccine serotypes. Immunologic response was compared between burn and neurosurgical patients. Multiple variable regression methods were used to explore associations of clinical and laboratory parameters to immunologic responses. RESULTS: Among the 16 burn and 27 neurosurgical patients enrolled, 87.5% and 40.7% generated a successful response to the vaccine, respectively (p = 0.004). Both median post-PPSV23 IgG concentrations (7.79 [4.56-18.1] versus 2.93 [1.49-8.01] mcg/mL; p = 0.006) and fold rises (10.66 [7.44-14.56] versus 3.48 [1.13-6.59]; p CONCLUSION: Critically ill burn patients can generate successful responses to PPSV23 during acute injury whereas responses among neurosurgical patients is comparatively blunted. Further study is needed to elucidate the mechanisms of differential antigen responsiveness in these populations, including the role of acute stress responses, as well as the durability of these antibody responses

    Evening choruses in the Perth Canyon and their potential link with Myctophidae fishes

    Get PDF
    An evening chorus centered at near 2.2 kHz was detected across the years 2000 to 2014 from seabed receivers in 430-490 m depth overlooking the Perth Canyon, Western Australia. The chorus reached a maximum level typically 2.1 h post-sunset and normally ran for 2.1 h (between 3 dB down points). It was present at lower levels across most of the hours of darkness. Maximum chorus spectrum levels were 74-76 dB re 1 ĀµPa2/Hz in the 2 kHz 1/3 octave band, averaging 6-12 dB and up to 30 dB greater than pre-sunset levels. The chorus displayed highest levels over April to August each year with up to 10 dB differences between seasons. The spatial extent of the chorus was not determined but exceeded the sampling range of 13-15 km offshore from the 300 m depth contour and 33 km along the 300 m depth contour. The chorus comprised short damped pulses. The most likely chorus source is considered to be fishes of the family Myctophidae foraging in the water column. The large chorus spatial extent and its apparent correlation with regions of high productivity suggest it may act as an acoustic beacon to marine fauna indicating regions of high biomass

    Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    Get PDF
    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1āˆ’/āˆ’ null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1āˆ’/āˆ’ mice as compared to wildtype Shank1+/+ littermate controls. Shank1āˆ’/āˆ’ pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1āˆ’/āˆ’ males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1āˆ’/āˆ’ mice were unaffected, indicating a failure of Shank1āˆ’/āˆ’ males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1āˆ’/āˆ’ mice are consistent with a phenotype relevant to social communication deficits in autism.National Institute of Mental Health (U.S.) (Intramural Research Program)Simons Foundatio

    Scaling of maneuvering performance in baleen whales: larger whales outperform expectations

    Get PDF
    Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.We thank the crews of many research vessels including the R/V John Martin, R/V Fluke, ARSV Laurence M. Gould, R/V Sanna, M/V Antonie, M/V Northern Song, the Cascadia Research Collective and the Shallow Marine Surveys Group; in particular, we thank John Douglas, Andrew Bell, Shaun Tomlinson, Steve Cartwright, Tony D'Aoust, Dennis Rogers, Kelly Newton, Heather Riley, Gina Rousa and Mark Rousa. We also thank Brandon L. Southall, Alison K. Stimpert and Stacy L. DeRuiter for their role in collecting data as part of the SOCAL-BRS project. We thank Matt S. Savoca, Julian Dale and Danuta M. Wisniewska for assistance with data collection. Finally, we thank John H. Kennedy, Michael A. Thompson and the NSF Office of Polar Programs.Ye

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetĀ® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetĀ® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    • ā€¦
    corecore