31 research outputs found
Deep Chandra Observations of the Pulsar Wind Nebula Created by PSR B0355+54
We report on Chandra X-ray Observatory (CXO) observations of the pulsar wind
nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks
total exposure, performed over an 8 month period). We investigated the spatial
and spectral properties of the emission coincident with the pulsar, compact
nebula (CN), and extended tail. We find that the CN morphology can be
interpreted in a way that suggests a small angle between the pulsar spin axis
and our line-of-sight, as inferred from the radio data. On larger scales,
emission from the 7' (2 pc) tail is clearly seen. We also found hints of two
faint extensions nearly orthogonal to the direction of the pulsar's proper
motion. The spectrum extracted at the pulsar position can be described with an
absorbed power-law + blackbody model. The nonthermal component can be
attributed to magnetospheric emission, while the thermal component can be
attributed to emission from either a hot spot (e.g., a polar cap) or the entire
neutron star surface. Surprisingly, the spectrum of the tail shows only a
slight hint of cooling with increasing distance from the pulsar. This implies
either a low magnetic field with fast flow speed, or particle re-acceleration
within the tail. We estimate physical properties of the PWN and compare the
morphologies of the CN and the extended tail with those of other bow shock PWNe
observed with long CXO exposures.Comment: 11 pages, 8 figure
Recommended from our members
Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering
From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE
Kinetic Effects of Transferrin-Conjugated Gold Nanoparticles on the Antioxidant Glutathione-Thioredoxin Pathway
Nanoparticle-based therapeutics are being clinically translated for treating cancer. Even when thought to be biocompatible, nanoparticles are being increasingly identified as altering cell regulation and homeostasis. Antioxidant pathways are important for maintaining cell redox homeostasis and play important roles by maintaining ROS levels within tolerable ranges. Here, we sought to understand how a model of a relatively inert nanoparticle without any therapeutic agent itself could antagonize a cancer cell lines’ antioxidant mechanism. A label-free protein expression approach was used to assess the glutathione-thioredoxin antioxidative pathway in a prostate cancer cell line (PC-3) after exposure to gold nanoparticles conjugated with a targeting moiety (transferrin). The impact of the nanoparticles was also corroborated through morphological analysis with TEM and classification of pro-apoptotic cells by way of the sub-G0/G1 population via the cell cycle and annexin V apoptosis assay. After a two-hour exposure to nanoparticles, major proteins associated with the glutathione-thioredoxin antioxidant pathway were downregulated. However, this response was acute, and in terms of protein expression, cells quickly recovered within 24 h once nanoparticle exposure ceased. The impact on PRDX-family proteins appears as the most influential factor in how these nanoparticles induced an oxidative stress response in the PC-3 cells. An apparent adaptive response was observed if exposure to nanoparticles continued. Acute exposure was observed to have a detrimental effect on cell viability compared to continuously exposed cells. Nanoparticle effects on cell regulation likely provide a compounding therapeutic advantage under some circumstances, in addition to the action of any cytotoxic agents; however, any therapeutic advantage offered by nanoparticles themselves with regard to vulnerabilities specific to the glutathione-thioredoxin antioxidative pathway is highly temporal
Radical nephrectomy performed by open, laparoscopy with or without hand-assistance or robotic methods by the same surgeon produces comparable perioperative results
PURPOSE: Radical nephrectomy can be performed using open or laparoscopic (with or without hand assistance) methods, and most recently using the da Vinci Surgical Robotic System. We evaluated the perioperative outcomes using a contemporary cohort of patients undergoing radical nephrectomy by one of the above 4 methods performed by the same surgeon. MATERIALS AND METHODS: The relevant clinical information on 57 consecutive patients undergoing radical nephrectomy from September 2000 until July 2004 by a single surgeon was entered in a Microsoft Access DatabaseTM and queried. Following appropriate statistical analysis, p values < 0.05 were considered significant. RESULTS: Of 57 patients, the open, robotic, laparoscopy with or without hand assistance radical nephrectomy were performed in 18, 6, 21, and 12 patients, respectively. The age, sex, body mass index (BMI), incidence of malignancy, specimen and tumor size, tumor stage, Fuhrman grade, hospital stay, change in postoperative creatinine, drop in hemoglobin, and perioperative complications were not significantly different between the methods. While the estimated median blood loss, postoperative narcotic use for pain control, and hospital stay were significantly higher in the open surgery method (p < 0.05), the median operative time was significantly shorter compared to the robotic method (p = 0.02). Operating room costs were significantly higher in the robotic and laparoscopic groups; however, there was no significant difference in total hospital costs between the 4 groups. CONCLUSIONS: The study demonstrates that radical nephrectomy can be safely performed either by open, robotic, or laparoscopic with or without hand assistance methods without significant difference in perioperative complication rates. A larger cohort and longer follow up are needed to validate our findings and establish oncological outcomes
Dehydration Effect on the Pore Size, Porosity, and Fractal Parameters of Shale Rocks: Ultrasmall-Angle X‑ray Scattering Study
The characterization of pore networks
is extremely important in
understanding transport and storage phenomena in unconventional gas
and oil reservoir rocks. An ultrasmall-angle X-ray scattering (USAXS)
measurement has been performed on Silurian black shales from the Baltic
Basin, Poland, from a wide range of depths along a burial diagenetic
sequence. This study provides insight into the nature of the pore
structure, including the pore size distribution, total porosity, and
fractal dimensions of the rocks. Samples were measured in both their
air-dried state, equilibrated at ∼50% relative humidity, and
prior to dehydration by drying at 200 °C to make a comprehensive
comparison of the pore structure changes induced by dehydration. Two
trends were observed: porosity values decreased with depth as expected
from the models of porosity evolution with burial and increased upon
sample dehydration. The USAXS-measured porosity values show very good
correspondence with the measurements by immersion porosity methods.
The increase in porosity upon dehydration was found to be dominated
by a volume increase in the pores of 100–1000 nm diameter;
the pores were filled by capillary water and clay-bound water in the
air-dry state and liberated during drying. The geometric irregularities
of pore–shale rock interfaces have been quantified by fractal
dimension. The removal of water from the sample also serves to increase
the fractal dimension suggesting that the removal of water molecules
increases the surface or mass irregularity. Implications to shale
porosity measurement and shale gas models are discussed