504 research outputs found
Countercurrent Chromatography Fractions of Plant Extracts with Anti-Tuberculosis Activity
Samples of numerous plant species were received from the southwestern part of the USA, from Richard Spjut, and plant samples were collected here in Illinois. All were extracted with typical solvents, giving crude residues, some of which were subjected to chromatographic methods. Some of the crude residues and some of the fractions were tested for anti-tuberculosis activity and/or antibacterial activity.
In a general way, bioactive natural products are dealt with very well by Liang & Fang. More specifically, the southwestern part of the United States has a large variety of indigenous plants many of which have not been investigated for their medicinal potential, and only very few have had their extracts separated into the individual compounds they may contain. But, some information is available for Native American herbal uses (Moerman,2003)
Brane/flux annihilation transitions and nonperturbative moduli stabilization
By extending the calculation of Kahler moduli stabilization to account for an
embiggened antibrane, we reevaluate brane/flux annihilation in a warped throat
with one stabilized Kahler modulus. We find that depending on the relative size
of various fluxes three things can occur: the decay process proceeds
unhindered, the anti-D3-branes are forbidden to decay classically, or the
entire space decompactifies. Additionally, we show that the Kahler modulus
receives a contribution from the collective 3-brane tension. This allows for a
significant change in compactified volume during the transition and possibly
mitigates some fine tuning otherwise required to achieve large volume.Comment: 25 pages, 6 figures, LaTeX. v2: references adde
Review of the Traditional Uses, Phytochemistry, and Pharmacological Activities of Rhoicissus Species (Vitaceae)
Species within the genus Rhoicissus (Vitaceae) are commonly used in South African traditional medicine. The current review discusses the occurrence, distribution, traditional uses, phytochemistry, and pharmacological properties of Rhoicissus species covering the period 1981–2020. The data reported were systematically collected, read, and analysed from scientific electronic databases including Scopus, Scifinder, Pubmed, and Google Scholar. Reported evidence indicates that species in this genus are used for the treatment of gastrointestinal complaints, sexually transmitted infections (STIs), and infertility, as well as to tone the uterus during pregnancy and to facilitate delivery. Pharmacological studies have further shown that members of the Rhoicissus genus display antidiabetic, uterotonic, ascaricidal, hepatoprotective, antioxidant, antimicrobial, anticancer, and anti-inflammatory properties. They are linked to the presence of bioactive compounds isolated from the genus. Hence, Rhoicissus species can potentially be an alternative therapeutic strategy to treat diseases and develop safer and more potent drugs to combat diseases. Plant species of this genus have valuable medicinal benefits due to their significant pharmacological potential. However, scientific investigation and information of the therapeutic potential of Rhoicissus remain limited as most of the species in the genus have not been fully exploited. Therefore, there is a need for further investigations to exploit the therapeutic potential of the genus Rhoicissus. Future studies should evaluate the phytochemical, pharmacological, and toxicological activities, as well as the mode of action, of Rhoicissus crude extracts and secondary compounds isolated from the species
X-ray Fluorescent Fe Kalpha Lines from Stellar Photospheres
X-ray spectra from stellar coronae are reprocessed by the underlying
photosphere through scattering and photoionization events. While reprocessed
X-ray spectra reaching a distant observer are at a flux level of only a few
percent of that of the corona itself, characteristic lines formed by inner
shell photoionization of some abundant elements can be significantly stronger.
The emergent photospheric spectra are sensitive to the distance and location of
the fluorescing radiation and can provide diagnostics of coronal geometry and
abundance. Here we present Monte Carlo simulations of the photospheric Kalpha
doublet arising from quasi-neutral Fe irradiated by a coronal X-ray source.
Fluorescent line strengths have been computed as a function of the height of
the radiation source, the temperature of the ionising X-ray spectrum, and the
viewing angle. We also illustrate how the fluorescence efficiencies scale with
the photospheric metallicity and the Fe abundance. Based on the results we make
three comments: (1) fluorescent Fe lines seen from pre-main sequence stars
mostly suggest flared disk geometries and/or super-solar disk Fe abundances;
(2) the extreme ~1400 mA line observed from a flare on V1486 Ori can be
explained entirely by X-ray fluorescence if the flare itself were partially
eclipsed by the limb of the star; and (3) the fluorescent Fe line detected by
Swift during a large flare on II Peg is consistent with X-ray excitation and
does not require a collisional ionisation contribution. There is no convincing
evidence supporting the energetically challenging explanation of electron
impact excitation for observed stellar Fe Kalpha lines.Comment: 30 pages; accepted for publication in the Astrophysical Journa
N-flation
The presence of many axion fields in four-dimensional string vacua can lead
to a simple, radiatively stable realization of chaotic inflation.Comment: 16 pages, 0 figures, latex; v2: added refs; v3: more refs, correction
to \S2.
Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions
Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution
Fluxes and Warping for Gauge Couplings in F-theory
We compute flux-dependent corrections in the four-dimensional F-theory
effective action using the M-theory dual description. In M-theory the 7-brane
fluxes are encoded by four-form flux and modify the background geometry and
Kaluza-Klein reduction ansatz. In particular, the flux sources a warp factor
which also depends on the torus directions of the compactification fourfold.
This dependence is crucial in the derivation of the four-dimensional action,
although the torus fiber is auxiliary in F-theory. In M-theory the 7-branes are
described by an infinite array of Taub-NUT spaces. We use the explicit metric
on this geometry to derive the locally corrected warp factor and M-theory
three-from as closed expressions. We focus on contributions to the 7-brane
gauge coupling function from this M-theory back-reaction and show that terms
quadratic in the internal seven-brane flux are induced. The real part of the
gauge coupling function is modified by the M-theory warp factor while the
imaginary part is corrected due to a modified M-theory three-form potential.
The obtained contributions match the known weak string coupling result, but
also yield additional terms suppressed at weak coupling. This shows that the
completion of the M-theory reduction opens the way to compute various
corrections in a genuine F-theory setting away from the weak string coupling
limit.Comment: 46 page
D-brane Deconstructions in IIB Orientifolds
With model building applications in mind, we collect and develop basic
techniques to analyze the landscape of D7-branes in type IIB compact Calabi-Yau
orientifolds, in three different pictures: F-theory, the D7 worldvolume theory
and D9-anti-D9 tachyon condensation. A significant complication is that
consistent D7-branes in the presence of O7^- planes are generically singular,
with singularities locally modeled by the Whitney Umbrella. This invalidates
the standard formulae for charges, moduli space and flux lattice dimensions. We
infer the correct formulae by comparison to F-theory and derive them
independently and more generally from the tachyon picture, and relate these
numbers to the closed string massless spectrum of the orientifold
compactification in an interesting way. We furthermore give concrete recipes to
explicitly and systematically construct nontrivial D-brane worldvolume flux
vacua in arbitrary Calabi-Yau orientifolds, illustrate how to read off D-brane
flux content, enhanced gauge groups and charged matter spectra from tachyon
matrices, and demonstrate how brane recombination in general leads to flux
creation, as required by charge conservation and by equivalence of geometric
and gauge theory moduli spaces.Comment: 49 pages, v2: two references adde
Towards an Explicit Model of D-brane Inflation
We present a detailed analysis of an explicit model of warped D-brane
inflation, incorporating the effects of moduli stabilization. We consider the
potential for D3-brane motion in a warped conifold background that includes
fluxes and holomorphically-embedded D7-branes involved in moduli stabilization.
Although the D7-branes significantly modify the inflaton potential, they do not
correct the quadratic term in the potential, and hence do not cause a uniform
change in the slow-roll parameter eta. Nevertheless, we present a simple
example based on the Kuperstein embedding of D7-branes, z_1=constant, in which
the potential can be fine-tuned to be sufficiently flat for inflation. To
derive this result, it is essential to incorporate the fact that the
compactification volume changes slightly as the D3-brane moves. We stress that
the compactification geometry dictates certain relationships among the
parameters in the inflaton Lagrangian, and these microscopic constraints impose
severe restrictions on the space of possible models. We note that the shape of
the final inflaton potential differs from projections given in earlier studies:
in configurations where inflation occurs, it does so near an inflection point.
Finally, we comment on the difficulty of making precise cosmological
predictions in this scenario. This is the companion paper to arXiv:0705.3837.Comment: 68 pages, 6 figures; v2: fixed typos, added refs and clarifications;
v3: expanded discussion of inflection point inflatio
Genetic diversity and demographic history of the leopard seal: A Southern Ocean top predator
Leopard seals (Hydrurga leptonyx) are top predators that can exert substantial top-down control of their Antarctic prey species. However, population trends and genetic diversity of leopard seals remain understudied, limiting our understanding of their ecological role. We investigated the genetic diversity, effective population size and demographic history of leopard seals to provide fundamental data that contextualizes their predatory influence on Antarctic ecosystems. Ninety leopard seals were sampled from the northern Antarctic Peninsula during the austral summers of 2008–2019 and a 405bp segment of the mitochondrial control region was sequenced for each individual. We uncovered moderate levels of nucleotide (π = 0.013) and haplotype (Hd = 0.96) diversity, and the effective population size was estimated at around 24,000 individuals (NE = 24,376; 95% CI: 16,876–33,126). Consistent with findings from other ice-breeding pinnipeds, Bayesian skyline analysis also revealed evidence for population expansion during the last glacial maximum, suggesting that historical population growth may have been boosted by an increase in the abundance of sea ice. Although leopard seals can be found in warmer, sub-Antarctic locations, the species’ core habitat is centered on the Antarctic, making it inherently vulnerable to the loss of sea ice habitat due to climate change. Therefore, detailed assessments of past and present leopard seal population trends are needed to inform policies for Antarctic ecosystems
- …