34,192 research outputs found
Manual for the District Fisheries Analysis System (FAS): A Package for Fisheries Management and Research. Part 1: Fish Population Survey Data (DOC9 Data Base)
Report issued on: issued September, 1987INHS Technical Report prepared for unspecified recipien
Separation properties in the primitive ideal space of a multiplier algebra
Peer reviewedPostprin
The Inner Corona Algebra of a C0(X)-Algebra
We are grateful to the referee for a number of helpful comments.Peer reviewedPostprin
Spectral synthesis in the multiplier algebra of a C_0(X)-algebra
We are grateful to the referee for a number of helpful comments and for pointing out an error in the original proof of Theorem 3.6.Peer reviewedPostprin
In situ generation of Mes2Mg as a non-nucleophilic carbon-centred base reagent for the efficient one-pot conversion of ketones to silyl enol ethers
Treatment of commercially available MesMgBr with 1,4-dioxane produces the key Mes2Mg reagent in situ which then mediates the deprotonation of ketones to deliver trimethylsilyl enol ethers, at readily accessible temperatures and without any nucleophilic addition, in an expedient and high yielding one-pot process
Temperature dependent refractive index of silicon and germanium
Silicon and germanium are perhaps the two most well-understood semiconductor
materials in the context of solid state device technologies and more recently
micromachining and nanotechnology. Meanwhile, these two materials are also
important in the field of infrared lens design. Optical instruments designed
for the wavelength range where these two materials are transmissive achieve
best performance when cooled to cryogenic temperatures to enhance signal from
the scene over instrument background radiation. In order to enable high quality
lens designs using silicon and germanium at cryogenic temperatures, we have
measured the absolute refractive index of multiple prisms of these two
materials using the Cryogenic, High-Accuracy Refraction Measuring System
(CHARMS) at NASA Goddard Space Flight Center, as a function of both wavelength
and temperature. For silicon, we report absolute refractive index and
thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at
wavelengths from 1.1 to 5.6 microns, while for germanium, we cover temperatures
ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare
our measurements with others in the literature and provide
temperature-dependent Sellmeier coefficients based on our data to allow
accurate interpolation of index to other wavelengths and temperatures. Citing
the wide variety of values for the refractive indices of these two materials
found in the literature, we reiterate the importance of measuring the
refractive index of a sample from the same batch of raw material from which
final optical components are cut when absolute accuracy greater than +/-5 x
10^-3 is desired.Comment: 10 pages, 8 figures, to be published in the Proc. of SPIE 6273
(Orlando
- …