28,651 research outputs found

    Strongly Coupled Chameleon Fields: New Horizons in Scalar Field Theory

    Full text link
    We show that as a result of non-linear self-interactions, scalar field theories that couple to matter much more strongly than gravity are not only viable but could well be detected by a number of future experiments, provided these are properly designed to do so.Comment: 4 pages, 3 figs. Typos corrected. Comments added. Phys. Rev. Lett. in prin

    NASTRAN general purpose interface requirements document

    Get PDF
    This NASTRAN (NASA STRuctural ANalysis) General Purpose Interface Requirements Document (IRD) defines standards for deliverables required of New Capability Contractors (NCCs) and relates these deliverables to the software development cycle. It also defines standards to be followed by NCCs for adding to and modifying the code in the NASTRAN software system and for adding to and modifying the four official NASTRAN manuals: The NASTRAN Theoretical Manual, the NASTRAN User's Manual, The NASTRAN Programmer's Manual, and The NASTRAN Demonstration Problem Manual. It is intended that this General Purpose IRD shall be incorporated by reference in all contracts for a new NASTRAN capability

    On the Magnitude of Dark Energy Voids and Overdensities

    Full text link
    We investigate the clustering of dark energy within matter overdensities and voids. In particular, we derive an analytical expression for the dark energy density perturbations, which is valid both in the linear, quasi-linear and fully non-linear regime of structure formation. We also investigate the possibility of detecting such dark energy clustering through the ISW effect. In the case of uncoupled quintessence models, if the mass of the field is of order the Hubble scale today or smaller, dark energy fluctuations are always small compared to the matter density contrast. Even when the matter perturbations enter the non-linear regime, the dark energy perturbations remain linear. We find that virialised clusters and voids correspond to local overdensities in dark energy, with \delta_{\phi}/(1+w) \sim \Oo(10^{-5}) for voids, \delta_{\phi}/(1+w) \sim \Oo(10^{-4}) for super-voids and \delta_{\phi}/(1+w) \sim \Oo(10^{-5}) for a typical virialised cluster. If voids with radii of 100300Mpc100-300 {\rm Mpc} exist within the visible Universe then δϕ\delta_{\phi} may be as large as 103(1+w)10^{-3}(1+w). Linear overdensities of matter and super-clusters generally correspond to local voids in dark energy; for a typical super-cluster: \delta_{\phi}/(1+w) \sim \Oo(-10^{-5}). The approach taken in this work could be straightforwardly extended to study the clustering of more general dark energy models.Comment: 20 pages, 14 figures. Accepted by the Astrophys.

    Numerical analysis of four-wave mixing between 2 ps mode-locked laser pulses in a tensile-strained bulk SOA

    Get PDF
    A numerical model of four-wave mixing between 2-ps pulses in a tensile-strained bulk semiconductor optical amplifier is presented. The model utilizes a modified Schrodinger equation to model the pulse propagation. The Schrodinger equation parameters such as the material gain first and second order dispersion, linewidth enhancement factors and optical loss coefficient are obtained using a previously developed steady-state model. The predicted four-wave mixing pulse characteristics show reasonably good agreement with experimental pulse characteristics obtained using frequency resolved optical gating
    corecore