31,218 research outputs found
FACTORS ASSOCIATED WITH SUCCESS OF FUEL ETHANOL PRODUCERS
Replaced with revised version of paper 08/24/04.Resource /Energy Economics and Policy,
Measurements of density, temperature, and their fluctuations in turbulent supersonic flow using UV laser spectroscopy
Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer
Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers
Energy recovering an electron beam after it has participated in a
free-electron laser (FEL) interaction can be quite challenging because of the
substantial FEL-induced energy spread and the energy anti-damping that occurs
during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such
an energy recovery scheme was implemented by properly matching the longitudinal
phase space throughout the recirculation transport by employing the so-called
energy compression scheme. In the present paper,after presenting a
single-particle dynamics approach of the method used to energy-recover the
electron beam, we report on experimental validation of the method obtained by
measurements of the so-called "compression efficiency" and "momentum
compaction" lattice transfer maps at different locations in the recirculation
transport line. We also compare these measurements with numerical tracking
simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&
Toeplitz algebras and spectral results for the one-dimensional Heisenberg model
We determine the structure of the spectrum and obtain non-propagation
estimates for a class of Toeplitz operators acting on a subset of the lattice
. This class contains the Hamiltonian of the one-dimensional Heisenberg
model.Comment: 13 page
Confluent operator algebras and the closability property
Certain operator algebras A on a Hilbert space have the property that every
densely defined linear transformation commuting with A is closable. Such
algebras are said to have the closability property. They are important in the
study of the transitive algebra problem. More precisely, if A is a
two-transitive algebra with the closability property, then A is dense in the
algebra of all bounded operators, in the weak operator topology. In this paper
we focus on algebras generated by a completely nonunitary contraction, and
produce several new classes of algebras with the closability property. We show
that this property follows from a certain strict cyclicity property, and we
give very detailed information on the class of completely nonunitary
contractions satisfying this property, as well as a stronger property which we
call confluence.Comment: Preliminary versio
Hypervelocity runaways from the Large Magellanic Cloud
We explore the possibility that the observed population of Galactic
hypervelocity stars (HVSs) originate as runaway stars from the Large Magellanic
Cloud (LMC). Pairing a binary evolution code with an N-body simulation of the
interaction of the LMC with the Milky Way, we predict the spatial distribution
and kinematics of an LMC runaway population. We find that runaway stars from
the LMC can contribute Galactic HVSs at a rate of . This is composed of stars at different points of
stellar evolution, ranging from the main-sequence to those at the tip of the
asymptotic giant branch. We find that the known B-type HVSs have kinematics
which are consistent with an LMC origin. There is an additional population of
hypervelocity white dwarfs whose progenitors were massive runaway stars.
Runaways which are even more massive will themselves go supernova, producing a
remnant whose velocity will be modulated by a supernova kick. This latter
scenario has some exotic consequences, such as pulsars and supernovae far from
star-forming regions, and a small rate of microlensing from compact sources
around the halo of the LMC.Comment: MNRAS, in pres
- …