81 research outputs found

    Gut microbiota in HIV-pneumonia patients is related to peripheral CD4 counts, lung microbiota, and in vitro macrophage dysfunction.

    Get PDF
    Pneumonia is common and frequently fatal in HIV-infected patients, due to rampant, systemic inflammation and failure to control microbial infection. While airway microbiota composition is related to local inflammatory response, gut microbiota has been shown to correlate with the degree of peripheral immune activation (IL6 and IP10 expression) in HIV-infected patients. We thus hypothesized that both airway and gut microbiota are perturbed in HIV-infected pneumonia patients, that the gut microbiota is related to peripheral CD4+ cell counts, and that its associated products differentially program immune cell populations necessary for controlling microbial infection in CD4-high and CD4-low patients. To assess these relationships, paired bronchoalveolar lavage and stool microbiota (bacterial and fungal) from a large cohort of Ugandan, HIV-infected patients with pneumonia were examined, and in vitro tests of the effect of gut microbiome products on macrophage effector phenotypes performed. While lower airway microbiota stratified into three compositionally distinct microbiota as previously described, these were not related to peripheral CD4 cell count. In contrast, variation in gut microbiota composition significantly related to CD4 cell count, lung microbiota composition, and patient mortality. Compared with patients with high CD4+ cell counts, those with low counts possessed more compositionally similar airway and gut microbiota, evidence of microbial translocation, and their associated gut microbiome products reduced macrophage activation and IL-10 expression and increased IL-1β expression in vitro. These findings suggest that the gut microbiome is related to CD4 status and plays a key role in modulating macrophage function, critical to microbial control in HIV-infected patients with pneumonia

    Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury.

    Get PDF
    Background:Recent studies have demonstrated the vital influence of commensal microbial communities on human health. The central role of the gut in the response to injury is well described; however, no prior studies have used culture-independent profiling techniques to characterize the gut microbiome after severe trauma. We hypothesized that in critically injured patients, the gut microbiome would undergo significant compositional changes in the first 72 hours after injury. Methods:Trauma stool samples were prospectively collected via digital rectal examination at the time of presentation (0 hour). Patients admitted to the intensive care unit (n=12) had additional stool samples collected at 24 hours and/or 72 hours. Uninjured patients served as controls (n=10). DNA was extracted from stool samples and 16S rRNA-targeted PCR amplification was performed; amplicons were sequenced and binned into operational taxonomic units (OTUs; 97% sequence similarity). Diversity was analyzed using principle coordinates analyses, and negative binomial regression was used to determine significantly enriched OTUs. Results:Critically injured patients had a median Injury Severity Score of 27 and suffered polytrauma. At baseline (0 hour), there were no detectable differences in gut microbial community diversity between injured and uninjured patients. Injured patients developed changes in gut microbiome composition within 72 hours, characterized by significant alterations in phylogenetic composition and taxon relative abundance. Members of the bacterial orders Bacteroidales, Fusobacteriales and Verrucomicrobiales were depleted during 72 hours, whereas Clostridiales and Enterococcus members enriched significantly. Discussion:In this initial study of the gut microbiome after trauma, we demonstrate that significant changes in phylogenetic composition and relative abundance occur in the first 72 hours after injury. This rapid change in intestinal microbiota represents a critical phenomenon that may influence outcomes after severe trauma. A better understanding of the nature of these postinjury changes may lead to the ability to intervene in otherwise pathological clinical trajectories. Level of evidence:III. Study type:Prognostic/epidemiological

    Distinct lung microbiota associate with HIV-associated chronic lung disease in children.

    Get PDF
    Chronic lung disease (CLD) is a common co-morbidity for HIV-positive children and adolescents on antiretroviral therapy (ART) in sub-Saharan Africa. In this population, distinct airway microbiota may differentially confer risk of CLD. In a cross-sectional study of 202 HIV-infected children aged 6-16 years in Harare, Zimbabwe, we determined the association of sputum microbiota composition (using 16S ribosomal RNA V4 gene region sequencing) with CLD defined using clinical, spirometric, or radiographic criteria. Forty-two percent of children were determined to have CLD according to our definition. Dirichlet multinomial mixtures identified four compositionally distinct sputum microbiota structures. Patients whose sputum microbiota was dominated by Haemophilus, Moraxella or Neisseria (HMN) were at 1.5 times higher risk of CLD than those with Streptococcus or Prevotella (SP)-dominated microbiota (RR = 1.48, p = 0.035). Cell-free products of HMN sputum microbiota induced features of epithelial disruption and inflammatory gene expression in vitro, indicating enhanced pathogenic potential of these CLD-associated microbiota. Thus, HIV-positive children harbor distinct sputum microbiota, with those dominated by Haemophilus, Moraxella or Neisseria associated with enhanced pathogenesis in vitro and clinical CLD

    Going Deeper: Metagenome of a Hadopelagic Microbial Community

    Get PDF
    The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above
    • …
    corecore