41 research outputs found

    Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations

    Get PDF
    H-1-MR spectroscopy of skeletal muscle provides insight into metabolism that is not available noninvasively by other methods. The recommendations given in this article are intended to guide those who have basic experience in general MRS to the special application of H-1-MRS in skeletal muscle. The highly organized structure of skeletal muscle leads to effects that change spectral features far beyond simple peak heights, depending on the type and orientation of the muscle. Specific recommendations are given for the acquisition of three particular metabolites (intramyocellular lipids, carnosine and acetylcarnitine) and for preconditioning of experiments and instructions to study volunteers.Peer reviewe

    Assessment of Hepatic Mitochondrial Oxidation and Pyruvate Cycling in NAFLD by (13)C Magnetic Resonance Spectroscopy

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and there is great interest in understanding the potential role of alterations in mitochondrial metabolism in its pathogenesis. To address this question we assessed rates of hepatic mitochondrial oxidation in subjects with and without NAFLD by monitoring the rate of (13)C labeling in hepatic [5-(13)C]glutamate and [1-(13)C]glutamate by (13)C MRS during an infusion of [1-(13)C]acetate. We found that rates of hepatic mitochondrial oxidation were similar between NAFLD and Control subjects. We also assessed rates of hepatic pyruvate cycling during an infusion of [3-(13)C]lactate by monitoring the (13)C label in hepatic [2-(13)C]alanine and [2-(13)C]glutamate and found that this flux also was similar between groups and more than 10-fold lower than previously reported. Contrary to previous studies we show that hepatic mitochondrial oxidation and pyruvate cycling are not altered in NAFLD and do not account for the hepatic fat accumulation

    Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes

    No full text
    To examine the mechanism by which moderate weight reduction improves basal and insulin-stimulated rates of glucose metabolism in patients with type 2 diabetes, we used (1)H magnetic resonance spectroscopy to assess intrahepatic lipid (IHL) and intramyocellular lipid (IMCL) content in conjunction with hyperinsulinemic-euglycemic clamps using [6,6-(2)H(2)]glucose to assess rates of glucose production and insulin-stimulated peripheral glucose uptake. Eight obese patients with type 2 diabetes were studied before and after weight stabilization on a moderately hypocaloric very-low-fat diet (3%). The diabetic patients were markedly insulin resistant in both liver and muscle compared with the lean control subjects. These changes were associated with marked increases in IHL (12.2 ± 3.4 vs. 0.6 ± 0.1%; P = 0.02) and IMCL (2.0 ± 0.3 vs. 1.2 ± 0.1%; P = 0.02) compared with the control subjects. A weight loss of only ~8 kg resulted in normalization of fasting plasma glucose concentrations (8.8 ± 0.5 vs. 6.4 ± 0.3 mmol/l; P < 0.0005), rates of basal glucose production (193 ± 7 vs. 153 ± 10 mg/min; P < 0.0005), and the percentage suppression of hepatic glucose production during the clamp (29 ± 22 vs. 99 ± 3%; P = 0.003). These improvements in basal and insulin-stimulated hepatic glucose metabolism were associated with an 81 ± 4% reduction in IHL (P = 0.0009) but no significant change in insulin-stimulated peripheral glucose uptake or IMCL (2.0 ± 0.3 vs. 1.9 ± 0.3%; P = 0.21). In conclusion, these data support the hypothesis that moderate weight loss normalizes fasting hyperglycemia in patients with poorly controlled type 2 diabetes by mobilizing a relatively small pool of IHL, which reverses hepatic insulin resistance and normalizes rates of basal glucose production, independent of any changes in insulin-stimulated peripheral glucose metabolism

    Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic <sup>13</sup>C magnetic resonance spectroscopy

    No full text
    Despite the central role of the liver in the regulation of glucose and lipid metabolism there are currently no methods to directly assess hepatic oxidative metabolism in humans in vivo. By utilizing a novel (13)C-labeling strategy in combination with (13)C magnetic resonance spectroscopy we show that rates of mitochondrial oxidation and anaplerosis in human liver can be directly determined noninvasively. Using this approach we found the mean rates of hepatic TCA cycle flux (V(TCA)) and anaplerotic flux (V(ANA)) to be 0.43 ± 0.04 μmol (g-liver-min)(−1) and 0.60 ± 0.11 μmol (g-liver-min)(−1), respectively, in fourteen healthy, lean, individuals. We also found the ratio V(ANA)/V(TCA) to be 1.39 ± 0.22, which is several fold lower than recently published estimates using an indirect approach. This method will be useful for understanding the pathogenesis of non-alcoholic fatty liver disease and type 2 diabetes as well as assessing the effectiveness of new therapies targeting these pathways in man
    corecore