163 research outputs found
Global H-NS counter-silencing by LuxR activates quorum sensing gene expression
Bacteria coordinate cellular behaviors using a cell-cell communication system termed quorum sensing. In Vibrio harveyi, the master quorum sensing transcription factor LuxR directly regulates \u3e100 genes in response to changes in population density. Here, we show that LuxR derepresses quorum sensing loci by competing with H-NS, a global transcriptional repressor that oligomerizes on DNA to form filaments and bridges. We first identified H-NS as a repressor of bioluminescence gene expression, for which LuxR is a required activator. In an hns deletion strain, LuxR is no longer necessary for transcription activation of the bioluminescence genes, suggesting that the primary role of LuxR is to displace H-NS to derepress gene expression. Using RNA-seq and ChIP-seq, we determined that H-NS and LuxR co-regulate and co-occupy 28 promoters driving expression of 63 genes across the genome. ChIP-PCR assays show that as autoinducer concentration increases, LuxR protein accumulates at co-occupied promoters while H-NS protein disperses. LuxR is sufficient to evict H-NS from promoter DNA in vitro, which is dependent on LuxR DNA binding activity. From these findings, we propose a model in which LuxR serves as a counter-silencer at H-NS-repressed quorum sensing loci by disrupting H-NS nucleoprotein complexes that block transcription
Transcriptome Profiling Reveals Matrisome Alteration as a Key Feature of Ovarian Cancer Progression
BACKGROUND:
Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization.
METHODS:
RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization.
RESULTS:
2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis.
CONCLUSION:
These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions
Stalking the Fourth Domain in Metagenomic Data: Searching for, Discovering, and Interpreting Novel, Deep Branches in Marker Gene Phylogenetic Trees
BACKGROUND: Most of our knowledge about the ancient evolutionary history of organisms has been derived from data associated with specific known organisms (i.e., organisms that we can study directly such as plants, metazoans, and culturable microbes). Recently, however, a new source of data for such studies has arrived: DNA sequence data generated directly from environmental samples. Such metagenomic data has enormous potential in a variety of areas including, as we argue here, in studies of very early events in the evolution of gene families and of species. METHODOLOGY/PRINCIPAL FINDINGS: We designed and implemented new methods for analyzing metagenomic data and used them to search the Global Ocean Sampling (GOS) expedition data set for novel lineages in three gene families commonly used in phylogenetic studies of known and unknown organisms: small subunit rRNA and the recA and rpoB superfamilies. Though the methods available could not accurately identify very deeply branched ss-rRNAs (largely due to difficulties in making robust sequence alignments for novel rRNA fragments), our analysis revealed the existence of multiple novel branches in the recA and rpoB gene families. Analysis of available sequence data likely from the same genomes as these novel recA and rpoB homologs was then used to further characterize the possible organismal source of the novel sequences. CONCLUSIONS/SIGNIFICANCE: Of the novel recA and rpoB homologs identified in the metagenomic data, some likely come from uncharacterized viruses while others may represent ancient paralogs not yet seen in any cultured organism. A third possibility is that some come from novel cellular lineages that are only distantly related to any organisms for which sequence data is currently available. If there exist any major, but so-far-undiscovered, deeply branching lineages in the tree of life, we suggest that methods such as those described herein currently offer the best way to search for them
In children, the microbiota of the nasopharynx and bronchoalveolar lavage fluid are both similar and different
RATIONALE:
Sputum and bronchoalveolar lavage fluid (BALF) are often obtained to elucidate the lower airway microbiota in adults. Acquiring sputum samples from children is difficult and obtaining samples via bronchoscopy in children proves challenging due to the need for anesthesia and specialized procedural expertise; therefore nasopharyngeal (NP) swabs are often used as surrogates when investigating the pediatric airway microbiota. In adults, the airway microbiota differs significantly between NP and BALF samples however, minimal data exist in children.
OBJECTIVES:
To compare NP and BALF samples in children undergoing clinically indicated bronchoscopy.
METHODS:
NP and BALF samples were collected during clinically indicated bronchoscopy. Bacterial DNA was extracted from 72 samples (36 NP/BALF pairs); the bacterial V1-V3 region of the 16S rRNA gene was amplified and sequenced on the Illumina Miseq platform. Analysis was performed using mothur software.
RESULTS:
Compared to NP samples, BALF had increased richness and diversity. Similarity between paired NP and BALF (intra-subject) samples was greater than inter-subject samples (Pβ=β0.0006). NP samples contained more Actinobacteria (2.2% vs 21%; adjusted Pβ=β1.4βΓβ10-6 ), while BALF contained more Bacteroidetes (29.5% vs 3.2%; adjusted Pβ=β1.2βΓβ10-9 ). At the genus level several differences existed, however Streptococcus abundance was similar in both sample types (NP 37.3% vs BAL 36.1%; adjusted Pβ=β0.8).
CONCLUSION:
Our results provide evidence that NP samples can be used to distinguish differences between children, but the relative abundance of organisms may differ between the nasopharynx and lower airway in pediatric patients. Studies utilizing NP samples as surrogates for the lower airway should be interpreted with caution
Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer
Epithelial to mesenchymal transition (EMT) involves loss of an epithelial phenotype and activation of a mesenchymal one. Enhanced expression of genes associated with a mesenchymal transition includes ZEB1/2, TWIST, and FOXC1. miRNAs are known regulators of gene expression and altered miRNA expression is known to enhance EMT in breast cancer. Here we demonstrate that the tumor suppressive miRNA family, miR-200, is not expressed in triple negative breast cancer (TNBC) cell lines and that miR-200b-3p over-expression represses EMT, which is evident through decreased migration and increased CDH1 expression. Despite the loss of migratory capacity following re-expression of miR-200b-3p, no subsequent loss of the conventional miR-200 family targets and EMT markers ZEB1/2 was observed. Next generation RNA-sequencing analysis showed that enhanced expression of pri-miR-200b lead to ectopic expression of both miR-200b-3p and miR-200b-5p with multiple isomiRs expressed for each of these miRNAs. Furthermore, miR-200b-5p was expressed in the receptor positive, epithelial breast cancer cell lines but not in the TNBC (mesenchymal) cell lines. In addition, a compensatory mechanism for miR-200b-3p/200b-5p targeting, where both miRNAs target the RHOGDI pathway leading to non-canonical repression of EMT, was demonstrated. Collectively, these data are the first to demonstrate dual targeting by miR-200b-3p and miR-200b-5p and a previously undescribed role for microRNA processing and strand expression in EMT and TNBC, the most aggressive breast cancer subtype
METAREP: JCVI metagenomics reportsβan open source tool for high-performance comparative metagenomics
Summary: JCVI Metagenomics Reports (METAREP) is a Web 2.0 application designed to help scientists analyze and compare annotated metagenomics datasets. It utilizes Solr/Lucene, a high-performance scalable search engine, to quickly query large data collections. Furthermore, users can use its SQL-like query syntax to filter and refine datasets. METAREP provides graphical summaries for top taxonomic and functional classifications as well as a GO, NCBI Taxonomy and KEGG Pathway Browser. Users can compare absolute and relative counts of multiple datasets at various functional and taxonomic levels. Advanced comparative features comprise statistical tests as well as multidimensional scaling, heatmap and hierarchical clustering plots. Summaries can be exported as tab-delimited files, publication quality plots in PDF format. A data management layer allows collaborative data analysis and result sharing
Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments
Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average~ 53 Mbp/site) were subjected to multiple taxonomic, phylogenetic and functional analyses. All methods, including G+C content distribution, MEGAN analyses and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7) and Fischerella-like populations at White Creek (WC_6). Chloroflexi-like sequences (esp. Roseiflexus and/or Chloroflexus spp.) were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae), and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria) population from Bath Lake Vista Annex (BLVA_20). Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes); however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional processes such a
- β¦