255 research outputs found

    Temperature dependent refractive index of silicon and germanium

    Get PDF
    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 microns, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than +/-5 x 10^-3 is desired.Comment: 10 pages, 8 figures, to be published in the Proc. of SPIE 6273 (Orlando

    Temperature-dependent Refractive Index of CaF2 and Infrasil 301

    Get PDF
    In order to enable high quality lens designs using calcium fluoride (CaF2) and Heraeus Infrasil 301 (Infrasil) for cryogenic operating temperatures, we have measured the absolute refractive index of these two materials as a function of both wavelength and temperature using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center. For CaF2, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 25 to 300 K at wavelengths from 0.4 to 5.6 pm, while for Infrasil, we cover temperatures ranging from 35 to 300 K and wavelengths from 0.4 to 3.6 pm. For CaF2, we compare our index measurements to measurements of other investigators. For Infrasil, we compare our measurements to the mate~al manufacturer's data at room temperature and to cryogenic measurements for fused silica from previous investigations including one of our own. Finally, we provide temperature-dependent Sellmeier coefficients based on our measured data to allow accurate interpolation of index to other wavelengths and temperatures

    Cryogenic Temperature-dependent Refractive Index Measurements of N-BK7, BaLKN3, and SF15 for NOTES PDI

    Get PDF
    In order to enable high quality lens designs using N-BK7, BaLKN3, and SF15 at cryogenic temperatures, we have measured the absolute refractive index of prisms of these three materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For N-BK7, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 50 to 300 K at wavelengths from 0.45 to 2.7 micrometers; for BaLKN3 we cover temperatures ranging from 40 to 300 K and wavelengths from 0.4 to 2.6 micrometers; for SF15 we cover temperatures ranging from 50 to 300 K and wavelengths from 0.45 to 2.6 micrometers. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. While we generally find good agreement (plus or minus 2 x 10(exp -4) for N-BK7, less than 1 x 10(exp -4) for the other materials) at room temperature between our measured values and those provided by the vendor, there is some variation between the datasheets provided with the prisms we measured and the catalog values published by the vendor. This underlines the importance of measuring the absolute refractive index of the material when precise knowledge of the refractive index is required

    Collapse: The History of How We Fail, and What We Can Do To Save Ourselves

    Get PDF
    Using Diamond\u27s Five point framework for how societies have collapsed in the past allow us in the present to recognize these signs in modern societies. We have the gift of hindsight in which we now know that factors such as climate change, impact on the environment, decline on friendly contact, increase in hostile contact, and a conservative outlook have all contributed to past societies\u27 collapse. We now recognize these issues in modern societies such as China, Australia, Rwanda, and Haiti. This allows these societies to reevaluate their current environmental standards on whether they are compatible with their survival or collapse. These changes have been implemented in Australia, in which farmers are changing their irrigation systems to be compatible with the current nutrient levels of their soils and changing their grazing animal populations to be compatible with this soil degradation as well.https://scholarworks.moreheadstate.edu/celebration_posters_2023/1000/thumbnail.jp

    Loss of UCHL1 promotes age-related degenerative changes in the enteric nervous system.

    Get PDF
    UCHL1 (ubiquitin carboxyterminal hydrolase 1) is a deubiquitinating enzyme that is particularly abundant in neurons. From studies of a spontaneous mutation arising in a mouse line it is clear that loss of function of UCHL1 generates profound degenerative changes in the central nervous system, and it is likely that a proteolytic deficit contributes to the pathology. Here these effects were found to be recapitulated in mice in which the Uchl1 gene had been inactivated by homologous recombination. In addition to the previously documented neuropathology associated with loss of UCHL1 function, axonal swellings were detected in the striatum. In agreement with previously reported findings the loss of UCHL1 function was accompanied by perturbations in ubiquitin pools, but glutathione levels were also significantly depleted in the brains of the knockout mice, suggesting that oxidative defense mechanisms may be doubly compromised. To determine if, in addition to its role in the central nervous system, UCHL1 function is also required for homeostasis of the enteric nervous system the gastrointestinal tract was analyzed in UCHL1 knockout mice. The mice displayed functional changes and morphological changes in gut neurons that preceded degenerative changes in the brain. The changes were qualitatively and quantitatively similar to those observed in wild type mice of much greater age, and strongly resemble changes reported for elderly humans. UCHL1 knockout mice should therefore serve as a useful model of gut aging

    Individually Optimal Choices Can Be Collectively Disastrous in COVID-19 Disease Control

    Get PDF
    Background: The word \u27pandemic\u27 conjures dystopian images of bodies stacked in the streets and societies on the brink of collapse. Despite this frightening picture, denialism and noncompliance with public health measures are common in the historical record, for example during the 1918 Influenza pandemic or the 2015 Ebola epidemic. The unique characteristics of SARS-CoV-2-its high basic reproduction number (R0), time-limited natural immunity and considerable potential for asymptomatic spread-exacerbate the public health repercussions of noncompliance with interventions (such as vaccines and masks) to limit disease transmission. Our work explores the rationality and impact of noncompliance with measures aimed at limiting the spread of SARS-CoV-2. Methods: In this work, we used game theory to explore when noncompliance confers a perceived benefit to individuals. We then used epidemiological modeling to predict the impact of noncompliance on control of SARS-CoV-2, demonstrating that the presence of a noncompliant subpopulation prevents suppression of disease spread. Results: Our modeling demonstrates that noncompliance is a Nash equilibrium under a broad set of conditions and that the existence of a noncompliant population can result in extensive endemic disease in the long-term after a return to pre-pandemic social and economic activity. Endemic disease poses a threat for both compliant and noncompliant individuals; all community members are protected if complete suppression is achieved, which is only possible with a high degree of compliance. For interventions that are highly effective at preventing disease spread, however, the consequences of noncompliance are borne disproportionately by noncompliant individuals. Conclusions: In sum, our work demonstrates the limits of free-market approaches to compliance with disease control measures during a pandemic. The act of noncompliance with disease intervention measures creates a negative externality, rendering suppression of SARS-CoV-2 spread ineffective. Our work underscores the importance of developing effective strategies for prophylaxis through public health measures aimed at complete suppression and the need to focus on compliance at a population level

    Modeling magmatic accumulations in the upper crust: Metamorphic implications for the country rock

    Get PDF
    Field exposures of magma chambers tend to reveal contact metamorphic aureoles in the surrounding crust, which width varies from few centimeters to kilometers. The igneous accumulation not only increases the temperature around it, but also weakens its surrounding country rock beyond the brittle-ductile transition temperature. The formation of a ductile halo around the magmatic reservoir may significantly impact into the stability and growth of the magma chamber, as well as into potential dyke injections and processes of ground deformation. In this paper, we examine how a magmatic accumulation affects the country rock through the combination of petrologic and thermal perspectives. For this, we numerically modeled (i) the conductive cooling of an instantaneously emplaced magma chamber within compositionally representative pelitic and carbonate upper crusts, and (ii) the corresponding changes in the viscosity of the host rock potentially leading to ductile regimes. We consider basaltic to rhyolitic magma chambers at different depths with oblate, prolate and spherical geometries. The resulting temperature field distribution at different time steps is integrated with crustal metamorphic effects through phase diagram modeling. Our results indicate that the geometry of the magma accumulations plays a dominant role in controlling the local metamorphic and thermal effects on the country rocks. They conclude that (i) the combination of relatively simple geothermal models with petrologic datasets can generate first order predictions for the maximum metamorphic grade and geometry of magma chamber aureoles; (ii) the possible changes in the mechanical properties of the country rock are not necessarily linked to the petrological changes in contact aureoles; and (iii) the present rheologic outcomes may be used in further studies of magma chamber stability and integrity, which may favor the understanding of the melt transfer throughout the crust. © 2016 Elsevier B.V.AG is grateful for her Ramón y Cajal contract (RYC-2012-11024). A-V thanks the assistance of the “Ramón y Cajal” research program (RYC-2011-07584) and Programa Propio I (USal-2014). MD acknowledges the MISTI program (Massachusetts Institute of Technology [MIT] International Science and Technology Initiative) for fundingwork at the University of Salamanca in 2014.Peer reviewe

    Crohn\u27s disease-associated ATG16L1 T300A genotype is associated with improved survival in gastric cancer

    Get PDF
    BACKGROUND: A non-synonymous single nucleotide polymorphism of the ATG16L1 gene, T300A, is a major Crohn\u27s disease (CD) susceptibility allele, and is known to be associated with increased apoptosis induction in the small intestinal crypt base in CD subjects and mouse models. We hypothesized that ATG16L1 T300A genotype also correlates with increased tumor apoptosis and therefore could lead to superior clinical outcome in cancer subjects. METHODS: T300A genotyping by Taqman assay was performed for gastric carcinoma subjects who underwent resection from two academic medical centers. Transcriptomic analysis was performed by RNA-seq on formalin-fixed paraffin-embedded cancerous tissue. Tumor apoptosis and autophagy were determined by cleaved caspase-3 and p62 immunohistochemistry, respectively. The subjects\u27 genotypes were correlated with demographics, various histopathologic features, transcriptome, and clinical outcome. FINDINGS: Of the 220 genotyped subjects, 163 (74%) subjects carried the T300A allele(s), including 55 (25%) homozygous and 108 (49%) heterozygous subjects. The T300A/T300A subjects had superior overall survival than the other groups. Their tumors were associated with increased CD-like lymphoid aggregates and increased tumor apoptosis without concurrent increase in tumor mitosis or defective autophagy. Transcriptomic analysis showed upregulation of WNT/β-catenin signaling and downregulation of PPAR, EGFR, and inflammatory chemokine pathways in tumors of T300A/T300A subjects. INTERPRETATION: Gastric carcinoma of subjects with the T300A/T300A genotype is associated with repressed EGFR and PPAR pathways, increased tumor apoptosis, and improved overall survival. Genotyping gastric cancer subjects may provide additional insight for clinical stratification
    corecore